skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Co‐design of memorized controllers for global sampled‐data stabilization a class of nonlinear system with input delay
Abstract Global sampled‐data stabilization for a class of nonlinear continuous system with input delay has been investigated directly in the discrete‐time domain due to challenges confronted in dealing with infinite‐dimensional system under input delay. Memorized state feedback controllers and output feedback controllers based on dynamic extension of state space have been constructed within the framework of co‐design between sampling period and scaling gain. Upon this compensation scheme, global sampled‐data stabilization a class of nonlinear system has been successfully realized no matter the input delay is smaller than the sampling period or not. Compared with memory‐less sampled‐data controllers, not only sampled‐data stabilization under large input delay has been realized but also transient performance of closed‐loop system has been further improved. Simulation results under different input delays and sampling periods have illustrated the effectiveness of results obtained.  more » « less
Award ID(s):
1826086
PAR ID:
10419643
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1049
Date Published:
Journal Name:
IET Control Theory & Applications
Volume:
17
Issue:
9
ISSN:
1751-8644
Format(s):
Medium: X Size: p. 1242-1254
Size(s):
p. 1242-1254
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary This paper proposes some novel compensating strategies in output feedback controller design for a class of nonlinear uncertain system. With Euler approximation introduced for unmeasured state and coordinate transformation constructed for continuous system, sampled‐data stabilization under arbitrary sampling period is firstly realized for linear system using compensation between sampling period and scaling gain. Then global sampled‐data stabilization for a class of nonlinear system is studied using linear feedback domination of Lyapunov functions. Extension of obtained results to three‐dimensional system or systems under general assumptions are also presented. With the compensation schemes proposed in controller design, the sufficiently small sampling period or approximating step previously imposed is not required any more. The proposed controllers can be easily implemented using output measurements sampled at the current step and delayed output measurements sampled at the previous step without constructing state observers which has been illustrated by the numerical studies. 
    more » « less
  2. Abstract Periodic event‐triggered control (PETC) evaluates triggering conditions only at periodic sampling times, based on which it is decided whether the controller needs to be updated. This article investigates the global stabilization of nonlinear systems that are affected by external disturbances under PETC mechanisms. Sufficient conditions are provided to ensure the resulting closed‐loop system is input‐to‐state stable (ISS) for the state feedback and the observer‐based output feedback configurations separately. The sampling period and the triggering functions are chosen such that the ISS‐Lyapunov function of continuous dynamics is also the ISS‐Lyapunov function of the overall system. Based on that, sufficient conditions in the form of linear matrix inequalities are provided for the PETC design of incrementally quadratic nonlinear systems. Two simulation examples are provided to illustrate the effectiveness of the proposed method. 
    more » « less
  3. Abstract We use a novel backstepping method to solve a stabilization problem for a nonlinear system with delayed sampled outputs that are not accurately measured. We provide an application to a system arising in vision‐based landing of airliners that includes coupling between the lateral and longitudinal dynamics, for which we provide performance guarantees in the presence of the delay, nonlinearity, and sampling. Our major contributions are (a) designs of lateral and longitudinal controls for our nonlinear model of an aircraft landing on an unequipped runway, (b) mathematical proofs that our controls ensure that the aircraft being modeled achieves desired alignment with the runway during its align phase, under sampling and delays that arise from image processing of visual information, and (c) comparative simulations exhibiting considerable improvement in control performance compared with previous methods that did not take the coupling of the dynamics or imprecise delayed sampled measurements into account. 
    more » « less
  4. This paper analyzes the consensus problem in heterogenous nonlinear multiagent systems. The multiagent systems not only have nonidentical nonlinear dynamics for all agents, but also have different network topologies for position and velocity interactions. An asynchronous sampled-data control without any input delays is first proposed, the information of each agent is only sampled at its own sampling instants and need not be sampled at other sampling instants. Then, quasi-consensus in heterogenous multiagent systems is proved by Lyapunov stability theory. When asynchronous sampled-data control has nonuniform input delays, sufficient conditions for quasi-consensus in heterogenous multiagent systems are further obtained. The upper bound of quasi-consensus errors is estimated. Finally, numerical simulations are provided to verify the effectiveness of theoretical results. 
    more » « less
  5. null (Ed.)
    Abstract Control Barrier Functions (CBFs) have become popular for enforcing — via barrier constraints — the safe operation of nonlinear systems within an admissible set. For systems with input delay(s) of the same length, constrained control has been achieved by combining a CBF for the delay free system with a state predictor that compensates the single input delay. Recently, this approach was extended to multi input systems with input delays of different lengths. One limitation of this extension is that barrier constraint adherence can only be guaranteed after the longest input delay has been compensated and all input channels become available for control. In this paper, we consider the problem of enforcing constraint adherence when only a subset of input delays have been compensated. In particular, we propose a new barrier constraint formulation that ensures that when possible, a subset of input channels with shorter delays will be utilized for keeping the system in the admissible set even before longer input delays have been compensated. We include a numerical example to demonstrate the effectiveness of the proposed approach. 
    more » « less