skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exact Inference in High-order Structured Prediction
In this paper, we study the problem of inference in high-order structured prediction tasks. In the context of Markov random fields, the goal of a high-order inference task is to maximize a score function on the space of labels, and the score function can be decomposed into sum of unary and high-order potentials. We apply a generative model approach to study the problem of high-order inference, and provide a two-stage convex optimization algorithm for exact label recovery. We also provide a new class of hypergraph structural properties related to hyperedge expansion that drives the success in general high-order inference problems. Finally, we connect the performance of our algorithm and the hyperedge expansion property using a novel hypergraph Cheeger-type inequality.  more » « less
Award ID(s):
2134209
PAR ID:
10419656
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We develop a framework for incorporating edge-dependent vertex weights (EDVWs) into the hypergraph minimum s - t cut problem. These weights are able to reflect different importance of vertices within a hyperedge, thus leading to better characterized cut properties. More precisely, we introduce a new class of hyperedge splitting functions that we call EDVWs-based, where the penalty of splitting a hyperedge depends only on the sum of EDVWs associated with the vertices on each side of the split. Moreover, we provide a way to construct submodular EDVWs-based splitting functions and prove that a hypergraph equipped with such splitting functions can be reduced to a graph sharing the same cut properties. In this case, the hypergraph minimum s - t cut problem can be solved using well-developed solutions to the graph minimum s - t cut problem. In addition, we show that an existing sparsification technique can be easily extended to our case and makes the reduced graph smaller and sparser, thus further accelerating the algorithms applied to the reduced graph. Numerical experiments using real-world data demonstrate the effectiveness of our proposed EDVWs-based splitting functions in comparison with the all-or-nothing splitting function and cardinality-based splitting functions commonly adopted in existing work. 
    more » « less
  2. We demonstrate a spatial hypergraph model that allows us to vary the amount of higher-order structure in the generated hypergraph. Specifically, we can vary from a model that is a pure pairwise graph into a model that is almost a pure hypergraph. We use this spatial hypergraph model to study higher-order effects in epidemic spread. We use a susceptible-infected-recovered-susceptible (SIRS) epidemic model designed to mimic the spread of an airborne pathogen. We study three types of airborne effects that emulate airborne dilution effects. For the scenario of linear dilution, which roughly corresponds to constant ventilation per person as required in many building codes, we see essentially no impact from introducing small hyperedges up to size 15 whereas we do see effects when the hyperedge set is dominated by large hyperedges. Specifically, we track the mean infections after the SIRS epidemic has run for a while so it is in a ?steady state? and find the mean is higher in the large hyperedge regime whereas it is unchanged from pairwise to small hyperedge regime. 
    more » « less
  3. We study the multi-agent multi-armed bandit (MAMAB) problem, where agents are factored into overlapping groups. Each group represents a hyperedge, forming a hypergraph over the agents. At each round of interaction, the learner pulls a joint arm (composed of individual arms for each agent) and receives a reward according to the hypergraph structure. Specifically, we assume there is a local reward for each hyperedge, and the reward of the joint arm is the sum of these local rewards. Previous work introduced the multi-agent Thompson sampling (MATS) algorithm and derived a Bayesian regret bound. However, it remains an open problem how to derive a frequentist regret bound for Thompson sampling in this multi-agent setting. To address these issues, we propose an efficient variant of MATS, the epsilon-exploring Multi-Agent Thompson Sampling (eps-MATS) algorithm, which performs MATS exploration with probability epsilon while adopts a greedy policy otherwise. We prove that eps-MATS achieves a worst-case frequentist regret bound that is sublinear in both the time horizon and the local arm size. We also derive a lower bound for this setting, which implies our frequentist regret upper bound is optimal up to constant and logarithm terms, when the hypergraph is sufficiently sparse. Thorough experiments on standard MAMAB problems demonstrate the superior performance and the improved computational efficiency of eps-MATS compared with existing algorithms in the same setting. 
    more » « less
  4. We study the multi-agent multi-armed bandit (MAMAB) problem, where agents are factored into overlapping groups. Each group represents a hyperedge, forming a hypergraph over the agents. At each round of interaction, the learner pulls a joint arm (composed of individual arms for each agent) and receives a reward according to the hypergraph structure. Specifically, we assume there is a local reward for each hyperedge, and the reward of the joint arm is the sum of these local rewards. Previous work introduced the multi-agent Thompson sampling (MATS) algorithm and derived a Bayesian regret bound. However, it remains an open problem how to derive a frequentist regret bound for Thompson sampling in this multi-agent setting. To address these issues, we propose an efficient variant of MATS, the epsilon-exploring Multi-Agent Thompson Sampling (eps-MATS) algorithm, which performs MATS exploration with probability epsilon while adopts a greedy policy otherwise. We prove that eps-MATS achieves a worst-case frequentist regret bound that is sublinear in both the time horizon and the local arm size. We also derive a lower bound for this setting, which implies our frequentist regret upper bound is optimal up to constant and logarithm terms, when the hypergraph is sufficiently sparse. Thorough experiments on standard MAMAB problems demonstrate the superior performance and the improved computational efficiency of eps-MATS compared with existing algorithms in the same setting. 
    more » « less
  5. Computing a dense subgraph is a fundamental problem in graph mining, with a diverse set of applications ranging from electronic commerce to community detection in social networks. In many of these applications, the underlying context is better modelled as a weighted hypergraph that keeps evolving with time. This motivates the problem of maintaining the densest subhypergraph of a weighted hypergraph in a dynamic setting, where the input keeps changing via a sequence of updates (hyperedge insertions/deletions). Previously, the only known algorithm for this problem was due to Hu et al. [19]. This algorithm worked only on unweighted hypergraphs, and had an approximation ratio of (1 +ϵ)r2 and an update time of O(poly(r, log n)), where r denotes the maximum rank of the input across all the updates. We obtain a new algorithm for this problem, which works even when the input hypergraph is weighted. Our algorithm has a significantly improved (near-optimal) approximation ratio of (1 +ϵ) that is independent of r, and a similar update time of O(poly(r, log n)). It is the first (1 +ϵ)-approximation algorithm even for the special case of weighted simple graphs. To complement our theoretical analysis, we perform experiments with our dynamic algorithm on large-scale, real-world data-sets. Our algorithm significantly outperforms the state of the art [19] both in terms of accuracy and efficiency. 
    more » « less