skip to main content


Title: End-to-end sequence-structure-function meta-learning predicts genome-wide chemical-protein interactions for dark proteins
Systematically discovering protein-ligand interactions across the entire human and pathogen genomes is critical in chemical genomics, protein function prediction, drug discovery, and many other areas. However, more than 90% of gene families remain “dark”—i.e., their small-molecule ligands are undiscovered due to experimental limitations or human/historical biases. Existing computational approaches typically fail when the dark protein differs from those with known ligands. To address this challenge, we have developed a deep learning framework, called PortalCG, which consists of four novel components: (i) a 3-dimensional ligand binding site enhanced sequence pre-training strategy to encode the evolutionary links between ligand-binding sites across gene families; (ii) an end-to-end pretraining-fine-tuning strategy to reduce the impact of inaccuracy of predicted structures on function predictions by recognizing the sequence-structure-function paradigm; (iii) a new out-of-cluster meta-learning algorithm that extracts and accumulates information learned from predicting ligands of distinct gene families (meta-data) and applies the meta-data to a dark gene family; and (iv) a stress model selection step, using different gene families in the test data from those in the training and development data sets to facilitate model deployment in a real-world scenario. In extensive and rigorous benchmark experiments, PortalCG considerably outperformed state-of-the-art techniques of machine learning and protein-ligand docking when applied to dark gene families, and demonstrated its generalization power for target identifications and compound screenings under out-of-distribution (OOD) scenarios. Furthermore, in an external validation for the multi-target compound screening, the performance of PortalCG surpassed the rational design from medicinal chemists. Our results also suggest that a differentiable sequence-structure-function deep learning framework, where protein structural information serves as an intermediate layer, could be superior to conventional methodology where predicted protein structures were used for the compound screening. We applied PortalCG to two case studies to exemplify its potential in drug discovery: designing selective dual-antagonists of dopamine receptors for the treatment of opioid use disorder (OUD), and illuminating the understudied human genome for target diseases that do not yet have effective and safe therapeutics. Our results suggested that PortalCG is a viable solution to the OOD problem in exploring understudied regions of protein functional space.  more » « less
Award ID(s):
2226183
NSF-PAR ID:
10419662
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Skolnick, Jeffrey
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
19
Issue:
1
ISSN:
1553-7358
Page Range / eLocation ID:
e1010851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metabotropic glutamate receptors (mGluRs) play an important role in regulating glutamate signal pathways, which are involved in neuropathy and periphery homeostasis. mGluR4, which belongs to Group III mGluRs, is most widely distributed in the periphery among all the mGluRs. It has been proved that the regulation of this receptor is involved in diabetes, colorectal carcinoma and many other diseases. However, the application of structure-based drug design to identify small molecules to regulate the mGluR4 receptor is limited due to the absence of a resolved mGluR4 protein structure. In this work, we first built a homology model of mGluR4 based on a crystal structure of mGluR8, and then conducted hierarchical virtual screening (HVS) to identify possible active ligands for mGluR4. The HVS protocol consists of three hierarchical filters including Glide docking, molecular dynamic (MD) simulation and binding free energy calculation. We successfully prioritized active ligands of mGluR4 from a set of screening compounds using HVS. The predicted active ligands based on binding affinities can almost cover all the experiment-determined active ligands, with only one ligand missed. The correlation between the measured and predicted binding affinities is significantly improved for the MM-PB/GBSA-WSAS methods compared to the Glide docking method. More importantly, we have identified hotspots for ligand binding, and we found that SER157 and GLY158 tend to contribute to the selectivity of mGluR4 ligands, while ALA154 and ALA155 could account for the ligand selectivity to mGluR8. We also recognized other 5 key residues that are critical for ligand potency. The difference of the binding profiles between mGluR4 and mGluR8 can guide us to develop more potent and selective modulators. Moreover, we evaluated the performance of IPSF, a novel type of scoring function trained by a machine learning algorithm on residue–ligand interaction profiles, in guiding drug lead optimization. The cross-validation root-mean-square errors (RMSEs) are much smaller than those by the endpoint methods, and the correlation coefficients are comparable to the best endpoint methods for both mGluRs. Thus, machine learning-based IPSF can be applied to guide lead optimization, albeit the total number of actives/inactives are not big, a typical scenario in drug discovery projects. 
    more » « less
  2. Identifying novel drug-target interactions is a critical and rate-limiting step in drug discovery. While deep learning models have been proposed to accelerate the identification process, here we show that state-of-the-art models fail to generalize to novel (i.e., never-before-seen) structures. We unveil the mechanisms responsible for this shortcoming, demonstrating how models rely on shortcuts that leverage the topology of the protein-ligand bipartite network, rather than learning the node features. Here we introduce AI-Bind, a pipeline that combines network-based sampling strategies with unsupervised pre-training to improve binding predictions for novel proteins and ligands. We validate AI-Bind predictions via docking simulations and comparison with recent experimental evidence, and step up the process of interpreting machine learning prediction of protein-ligand binding by identifying potential active binding sites on the amino acid sequence. AI-Bind is a high-throughput approach to identify drug-target combinations with the potential of becoming a powerful tool in drug discovery. 
    more » « less
  3. null (Ed.)
    Abstract In this study, we developed a novel algorithm to improve the screening performance of an arbitrary docking scoring function by recalibrating the docking score of a query compound based on its structure similarity with a set of training compounds, while the extra computational cost is neglectable. Two popular docking methods, Glide and AutoDock Vina were adopted as the original scoring functions to be processed with our new algorithm and similar improvement performance was achieved. Predicted binding affinities were compared against experimental data from ChEMBL and DUD-E databases. 11 representative drug receptors from diverse drug target categories were applied to evaluate the hybrid scoring function. The effects of four different fingerprints (FP2, FP3, FP4, and MACCS) and the four different compound similarity effect (CSE) functions were explored. Encouragingly, the screening performance was significantly improved for all 11 drug targets especially when CSE = S 4 (S is the Tanimoto structural similarity) and FP2 fingerprint were applied. The average predictive index (PI) values increased from 0.34 to 0.66 and 0.39 to 0.71 for the Glide and AutoDock vina scoring functions, respectively. To evaluate the performance of the calibration algorithm in drug lead identification, we also imposed an upper limit on the structural similarity to mimic the real scenario of screening diverse libraries for which query ligands are general-purpose screening compounds and they are not necessarily structurally similar to reference ligands. Encouragingly, we found our hybrid scoring function still outperformed the original docking scoring function. The hybrid scoring function was further evaluated using external datasets for two systems and we found the PI values increased from 0.24 to 0.46 and 0.14 to 0.42 for A2AR and CFX systems, respectively. In a conclusion, our calibration algorithm can significantly improve the virtual screening performance in both drug lead optimization and identification phases with neglectable computational cost. 
    more » « less
  4. null (Ed.)
    Compound-protein pairs dominate FDA-approved drug-target pairs and the prediction of compound-protein affinity and contact (CPAC) could help accelerate drug discovery. In this study we consider proteins as multi-modal data including 1D amino-acid sequences and (sequence-predicted) 2D residue-pair contact maps. We empirically evaluate the embeddings of the two single modalities in their accuracyand generalizability of CPAC prediction (i.e. structure-free interpretable compound-protein affinity prediction). And we rationalize their performances in both challenges of embedding individual modalities and learning generalizable embedding-label relationship. We further propose two models involving cross-modality protein embedding and establish that the one with cross interaction (thus capturing correlations among modalities) outperforms SOTAs and our single modality models in affinity, contact, and binding-site predictions for proteins never seen in the training set. 
    more » « less
  5. While the COVID-19 pandemic continues to worsen, effective medicines that target the life cycle of SARS-CoV-2 are still under development. As more highly infective and dangerous variants of the coronavirus emerge, the protective power of vaccines will decrease or vanish. Thus, the development of drugs, which are free of drug resistance is direly needed. The aim of this study is to identify allosteric binding modulators from a large compound library to inhibit the binding between the Spike protein of the SARS-CoV-2 virus and human angiotensin-converting enzyme 2 (hACE2). The binding of the Spike protein to hACE2 is the first step of the infection of host cells by the coronavirus. We first built a compound library containing 77 448 antiviral compounds. Molecular docking was then conducted to preliminarily screen compounds which can potently bind to the Spike protein at two allosteric binding sites. Next, molecular dynamics simulations were performed to accurately calculate the binding affinity between the spike protein and an identified compound from docking screening and to investigate whether the compound can interfere with the binding between the Spike protein and hACE2. We successfully identified two possible drug binding sites on the Spike protein and discovered a series of antiviral compounds which can weaken the interaction between the Spike protein and hACE2 receptor through conformational changes of the key Spike residues at the Spike–hACE2 binding interface induced by the binding of the ligand at the allosteric binding site. We also applied our screening protocol to another compound library which consists of 3407 compounds for which the inhibitory activities of Spike/hACE2 binding were measured. Encouragingly, in vitro data supports that the identified compounds can inhibit the Spike–ACE2 binding. Thus, we developed a promising computational protocol to discover allosteric inhibitors of the binding of the Spike protein of SARS-CoV-2 to the hACE2 receptor, and several promising allosteric modulators were discovered. 
    more » « less