skip to main content


Title: Framework for cyber risk loss distribution of hospital infrastructure: Bond percolation on mixed random graphs approach
Abstract

Networks like those of healthcare infrastructure have been a primary target of cyberattacks for over a decade. From just a single cyberattack, a healthcare facility would expect to see millions of dollars in losses from legal fines, business interruption, and loss of revenue. As more medical devices become interconnected, more cyber vulnerabilities emerge, resulting in more potential exploitation that may disrupt patient care and give rise to catastrophic financial losses. In this paper, we propose a structural model of an aggregate loss distribution across multiple cyberattacks on a prototypical hospital network. Modeled as a mixed random graph, the hospital network consists of various patient‐monitoring devices and medical imaging equipment as random nodes to account for the variable occupancy of patient rooms and availability of imaging equipment that are connected by bidirectional edges to fixed hospital and radiological information systems. Our framework accounts for the documented cyber vulnerabilities of a hospital's trusted internal network of its major medical assets. To our knowledge, there exist no other models of an aggregate loss distribution for cyber risk in this setting. We contextualize the problem in the probabilistic graph‐theoretical framework using a percolation model and combinatorial techniques to compute the mean and variance of the loss distribution for a mixed random network with associated random costs that can be useful for healthcare administrators and cybersecurity professionals to improve cybersecurity management strategies. By characterizing this distribution, we allow for the further utility of pricing cyber risk.

 
more » « less
NSF-PAR ID:
10419686
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Risk Analysis
Volume:
43
Issue:
12
ISSN:
0272-4332
Format(s):
Medium: X Size: p. 2450-2485
Size(s):
["p. 2450-2485"]
Sponsoring Org:
National Science Foundation
More Like this
  1. This article presents a novel hardware-assisted distributed ledger-based solution for simultaneous device and data security in smart healthcare. This article presents a novel architecture that integrates PUF, blockchain, and Tangle for Security-by-Design (SbD) of healthcare cyber–physical systems (H-CPSs). Healthcare systems around the world have undergone massive technological transformation and have seen growing adoption with the advancement of Internet-of-Medical Things (IoMT). The technological transformation of healthcare systems to telemedicine, e-health, connected health, and remote health is being made possible with the sophisticated integration of IoMT with machine learning, big data, artificial intelligence (AI), and other technologies. As healthcare systems are becoming more accessible and advanced, security and privacy have become pivotal for the smooth integration and functioning of various systems in H-CPSs. In this work, we present a novel approach that integrates PUF with IOTA Tangle and blockchain and works by storing the PUF keys of a patient’s Body Area Network (BAN) inside blockchain to access, store, and share globally. Each patient has a network of smart wearables and a gateway to obtain the physiological sensor data securely. To facilitate communication among various stakeholders in healthcare systems, IOTA Tangle’s Masked Authentication Messaging (MAM) communication protocol has been used, which securely enables patients to communicate, share, and store data on Tangle. The MAM channel works in the restricted mode in the proposed architecture, which can be accessed using the patient’s gateway PUF key. Furthermore, the successful verification of PUF enables patients to securely send and share physiological sensor data from various wearable and implantable medical devices embedded with PUF. Finally, healthcare system entities like physicians, hospital admin networks, and remote monitoring systems can securely establish communication with patients using MAM and retrieve the patient’s BAN PUF keys from the blockchain securely. Our experimental analysis shows that the proposed approach successfully integrates three security primitives, PUF, blockchain, and Tangle, providing decentralized access control and security in H-CPS with minimal energy requirements, data storage, and response time. 
    more » « less
  2. With advances in sensing, networking, and computing, smart medical devices have been widely deployed in various clinical settings. However, cyber attacks on hospital networks and critical medical devices are serious threats to patient safety, security, and privacy. This paper studies the cyber-security attacks that target hospital networks and other interconnected clinical environments. Our goal is to characterize threat models in such environments by studying the public data from vulnerability databases on medical devices and reports on real attacks targeted at hospital networks. We use a keyword-based approach to identify security reports on medical devices. We summarize our observations from the analysis of the vulnerability reports and provide insights into the types and impacts of vulnerabilities. 
    more » « less
  3. null (Ed.)
    The implementation of Internet of Things (IoT) devices in medical environments, has introduced a growing list of security vulnerabilities and threats. The lack of an extensible big data resource that captures medical device vulnerabilities limits the use of Artificial Intelligence (AI) based cyber defense systems in capturing, detecting, and preventing known and future attacks. We describe a system that generates a repository of Cyber Threat Intelligence (CTI) about various medical devices and their known vulnerabilities from sources such as manufacturer and ICS-CERT vulnerability alerts. We augment the intelligence repository with data sources such as Wikidata and public medical databases. The combined resources are integrated with threat intelligence in our Cybersecurity Knowledge Graph (CKG) from previous research. The augmented graph embeddings are useful in querying relevant information and can help in various AI assisted cybersecurity tasks. Given the integration of multiple resources, we found the augmented CKG produced higher quality graph representations. The augmented CKG produced a 31% increase in the Mean Average Precision (MAP) value, computed over an information retrieval task. 
    more » « less
  4. Black hat hackers use malicious exploits to circumvent security controls and take advantage of system vulnerabilities worldwide, costing the global economy over $450 billion annually. While many organizations are increasingly turning to cyber threat intelligence (CTI) to help prioritize their vulnerabilities, extant CTI processes are often criticized as being reactive to known exploits. One promising data source that can help develop proactive CTI is the vast and ever-evolving Dark Web. In this study, we adopted the computational design science paradigm to design a novel deep learning (DL)-based exploit-vulnerability attention deep structured semantic model (EVA-DSSM) that includes bidirectional processing and attention mechanisms to automatically link exploits from the Dark Web to vulnerabilities. We also devised a novel device vulnerability severity metric (DVSM) that incorporates the exploit post date and vulnerability severity to help cybersecurity professionals with their device prioritization and risk management efforts. We rigorously evaluated the EVA-DSSM against state-of-the-art non-DL and DL-based methods for short text matching on 52,590 exploit-vulnerability linkages across four testbeds: web application, remote, local, and denial of service. Results of these evaluations indicate that the proposed EVA-DSSM achieves precision at 1 scores 20% - 41% higher than non-DL approaches and 4% - 10% higher than DL-based approaches. We demonstrated the EVA-DSSM’s and DVSM’s practical utility with two CTI case studies: openly accessible systems in the top eight U.S. hospitals and over 20,000 Supervisory Control and Data Acquisition (SCADA) systems worldwide. A complementary user evaluation of the case study results indicated that 45 cybersecurity professionals found the EVA-DSSM and DVSM results more useful for exploit-vulnerability linking and risk prioritization activities than those produced by prevailing approaches. Given the rising cost of cyberattacks, the EVA-DSSM and DVSM have important implications for analysts in security operations centers, incident response teams, and cybersecurity vendors. 
    more » « less
  5. Black hat hackers use malicious exploits to circumvent security controls and take advantage of system vulnerabilities worldwide, costing the global economy over $450 billion annually. While many organizations are increasingly turning to cyber threat intelligence (CTI) to help prioritize their vulnerabilities, extant CTI processes are often criticized as being reactive to known exploits. One promising data source that can help develop proactive CTI is the vast and ever-evolving Dark Web. In this study, we adopted the computational design science paradigm to design a novel deep learning (DL)-based exploit-vulnerability attention deep structured semantic model (EVA-DSSM) that includes bidirectional processing and attention mechanisms to automatically link exploits from the Dark Web to vulnerabilities. We also devised a novel device vulnerability severity metric (DVSM) that incorporates the exploit post date and vulnerability severity to help cybersecurity professionals with their device prioritization and risk management efforts. We rigorously evaluated the EVA-DSSM against state-of-the-art non-DL and DL-based methods for short text matching on 52,590 exploit-vulnerability linkages across four testbeds: web application, remote, local, and denial of service. Results of these evaluations indicate that the proposed EVA-DSSM achieves precision at 1 scores 20%-41% higher than non-DL approaches and 4%-10% higher than DL-based approaches. We demonstrated the EVA-DSSM's and DVSM's practical utility with two CTI case studies: openly accessible systems in the top eight U.S. hospitals and over 20,000 Supervisory Control and Data Acquisition (SCADA) systems worldwide. A complementary user evaluation of the case study results indicated that 45 cybersecurity professionals found the EVA-DSSM and DVSM results more useful for exploit-vulnerability linking and risk prioritization activities than those produced by prevailing approaches. Given the rising cost of cyberattacks, the EVA-DSSM and DVSM have important implications for analysts in security operations centers, incident response teams, and cybersecurity vendors. 
    more » « less