skip to main content

This content will become publicly available on February 1, 2025

Title: PUFchain 3.0: Hardware-Assisted Distributed Ledger for Robust Authentication in Healthcare Cyber–Physical Systems
This article presents a novel hardware-assisted distributed ledger-based solution for simultaneous device and data security in smart healthcare. This article presents a novel architecture that integrates PUF, blockchain, and Tangle for Security-by-Design (SbD) of healthcare cyber–physical systems (H-CPSs). Healthcare systems around the world have undergone massive technological transformation and have seen growing adoption with the advancement of Internet-of-Medical Things (IoMT). The technological transformation of healthcare systems to telemedicine, e-health, connected health, and remote health is being made possible with the sophisticated integration of IoMT with machine learning, big data, artificial intelligence (AI), and other technologies. As healthcare systems are becoming more accessible and advanced, security and privacy have become pivotal for the smooth integration and functioning of various systems in H-CPSs. In this work, we present a novel approach that integrates PUF with IOTA Tangle and blockchain and works by storing the PUF keys of a patient’s Body Area Network (BAN) inside blockchain to access, store, and share globally. Each patient has a network of smart wearables and a gateway to obtain the physiological sensor data securely. To facilitate communication among various stakeholders in healthcare systems, IOTA Tangle’s Masked Authentication Messaging (MAM) communication protocol has been used, which securely enables patients to communicate, share, and store data on Tangle. The MAM channel works in the restricted mode in the proposed architecture, which can be accessed using the patient’s gateway PUF key. Furthermore, the successful verification of PUF enables patients to securely send and share physiological sensor data from various wearable and implantable medical devices embedded with PUF. Finally, healthcare system entities like physicians, hospital admin networks, and remote monitoring systems can securely establish communication with patients using MAM and retrieve the patient’s BAN PUF keys from the blockchain securely. Our experimental analysis shows that the proposed approach successfully integrates three security primitives, PUF, blockchain, and Tangle, providing decentralized access control and security in H-CPS with minimal energy requirements, data storage, and response time.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Page Range / eLocation ID:
Subject(s) / Keyword(s):
["smart healthcare","healthcare cyber\u2013physical systems (H-CPS)","physical unclonable function (PUF)","hardware-assisted security (HAS)","masked authentication messaging (MAM)","security-by-design (SbD)","blockchain","Tangle"]
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapid adoption of Internet-of-Medical-Things (IoMT) has revolutionized e-health systems, particularly in remote patient monitoring. With the growing adoption of Internet-of-Medical-Things (IoMT) in delivering technologically advanced health services, the security of Medtronic devices is pivotal as the security and privacy of data from these devices are directly related to patient safety. PUF has been the most widely adopted hardware security primitive which has been successfully integrated with various Internet-of-Things (IoT) based applications, particularly in smart healthcare for facilitating device security. To facilitate security and access control to IoMT devices, this work proposes a novel cybersecurity solution using PUF for facilitating global access to IoMT devices. The proposed framework presents an approach that enables the patient’s body area network devices supported by PUF to be securely accessible and controllable globally. The proposed cybersecurity solution has been experimentally validated using state-of-the-art SRAM PUF, a delay based PUF, and a trusted platform module (TPM) primitive. 
    more » « less
  2. The healthcare sector is constantly improving patient health record systems. However, these systems face a significant challenge when confronted with patient health record (PHR) data due to its sensitivity. In addition, patient’s data is stored and spread generally across various healthcare facilities and among providers. This arrangement of distributed data becomes problematic whenever patients want to access their health records and then share them with their care provider, which yields a lack of interoperability among various healthcare systems. Moreover, most patient health record systems adopt a centralized management structure and deploy PHRs to the cloud, which raises privacy concerns when sharing patient information over a network. Therefore, it is vital to design a framework that considers patient privacy and data security when sharing sensitive information with healthcare facilities and providers. This paper proposes a blockchain framework for secured patient health records sharing that allows patients to have full access and control over their health records. With this novel approach, our framework applies the Ethereum blockchain smart contracts, the Inter-Planetary File System (IPFS) as an off-chain storage system, and the NuCypher protocol, which functions as key management and blockchain-based proxy re-encryption to create a secured on-demand patient health records sharing system effectively. Results show that the proposed framework is more secure than other schemes, and the PHRs will not be accessible to unauthorized providers or users. In addition, all encrypted data will only be accessible to and readable by verified entities set by the patient. 
    more » « less
  3. This paper presents a novel framework for creating a recoverable rare disease patient identity system using blockchain and smart contracts, decentralized identifiers (DIDs), and the InterPlanetary File System (IPFS). Smart contracts are executable code that can be written into decentralized storage such as blockchains in order to enable tamper-proof transactions of data. DIDs provide a secure, decentralized, and extensible way to create, store, and manage digital identities, while IPFS provides a distributed, immutable, and secure storage system for patient identities. Utilizing these technologies with smart contracts, we created a framework to store persistent medical records of patients. Smart contracts additionally allow account recovery without the use of any centralized authority. The framework enables healthcare providers to securely access a patient's data while maintaining the patient's ownership of their data. The paper explores the advantages of using a decentralized identity system and highlights the potential of this approach to improve the security and universality of medical records for patients with rare diseases. 
    more » « less
  4. Patients often have their healthcare data stored in centralized systems, leading to challenges when reconciling or consolidating their data across providers due to centralized databases that store patient identities. The challenges disrupt the flow of patient care where time is sensitive for both patients and providers. Decentralized technologies have enabled a new identity model–Self-Sovereign Identity (SSI)–that grants individuals the right to freely control, access, and share their own data. This work proposes a system that achieves SSI in a semi-permissioned blockchain network using an open protocol as the certificate of authority and several guidelines for securely handling transactions in the network. Open protocols like Keccak can grant access to a permission-based network such as Hyperledger Fabric. The network architecture ensures data security and privacy through mechanisms of multi-signature transactions and guidelines for storing transactions locally, making this architecture ideal for privacy-centered use cases, such as healthcare data-sharing applications. The ultimate goal is to give patients full control over their identity and other data derived from their identity within a semi-permissioned network. 
    more » « less
  5. We have been witnessing an unprecedented increase in the aging population in human history. It is nontrivial to ensure the health and safety of seniors living alone. The prohibitive human labor cost necessitates more sustainable, technology oriented approaches instead of labor-intensive solutions. The raising digital healthcare services (DHS) leveraging the Internet of Medical Things (IoMT), Digital Twins (DT), and advanced fifth-generation and beyond (B5G) wireless communication technology, are widely recognized as promising solutions. By enabling a seamless interwoven of the physical world and cyberspace, Metaverse makes an ideal home for the next generation of DHS. Thanks to characteristics of decentralization, traceability, and unalterability, Blockchain is envisioned to enhance security properties in Metaverse. This paper proposes MetaSafe, a DHS architecture for seniors’ safety monitoring in Metaverse. Based on monitoring data collected by sensors, the activities and status of seniors, who are considered as the physical objects (PO), are mirrored to corresponding logical objects (LO) in a virtual community in the Metaverse, where activity recognition, potential risk prediction, and alert generation are realized. By leveraging Non-Fungible Token (NFT) technology to tokenize identities (POs and LOs) and data streams of the DHS on the blockchain, an NFT-based authentication fabric allows for verifiable ownership and traceable transferability during the data-sharing process. Specifically, an instant alerting system is introduced in this work that leverages a hybrid algorithm combining the singular spectrum analysis (SSA) approach with the long-short-term memory (LSTM) networks. Through an extensive experimental study, MetaSafe is validated as a feasible and promising approach to protect seniors living alone. 
    more » « less