skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diversity stabilizes but does not increase sapling survival in a tree diversity experiment
Tree plantings have the potential to increase species diversity and sequester carbon, yet planting failure and early mortality pose significant barriers to their success. Biodiversity‐ecosystem function theory suggests that diverse tree plantings could improve survival outcomes through either the portfolio or facilitation effect, yet there remain few tests of this hypothesis. Here, we use a large‐scale tree‐diversity experiment (BiodiversiTREE), with monitoring of nearly 8,000 individual trees to test whether (1) tree species diversity increases survival rates, (2) tree diversity stabilizes the risk of planting failure, and/or (3) diversity effects are important relative to other common drivers of seedling mortality (e.g. herbivory and soil moisture). We found that only species identity significantly impacted the likelihood of survival, not plant functional diversity nor plot species richness nor phylogenetic diversity. There were minor effects of elevation and soil moisture on survival, but both explained a very small amount of variation in the data (r2marg ≤ 0.011). Higher tree diversity did, however, strongly reduce variation in survival across plots, with nearly 2‐fold higher coefficients of variation in monocultures (30.4%, 28.4–32.6% 95% bootstrapped confidence interval) compared to 4‐ (16.3%, 13.8–18.7%) and 12‐species plots (12.8%, 10.8–14.7%). Ultimately, our results suggest that employing diverse species can lower the risk of planting failure (i.e. the portfolio effect), but that species selection still plays a large role in early establishment.  more » « less
Award ID(s):
2106103 2044406 2106014
PAR ID:
10419720
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Restoration Ecology
Volume:
31
Issue:
5
ISSN:
1061-2971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Human actions are decreasing the diversity and complexity of forests, and a mechanistic understanding of how these changes affect predators is needed to maintain ecosystem services, including pest regulation. Using a large‐scale tree diversity experiment, we investigate how spiders respond to trees growing in plots of single or mixed species combinations (4 or 12) by repeatedly sampling 540 trees spanning 15 species. In 2019 (6 years post‐establishment), spider responses to tree diversity varied by tree species. By 2021, diversity had a more consistently positive effect, with trees in 4‐ or 12‐species plots supporting 23% or 50% more spiders, respectively, compared to conspecifics in monocultures. Spiders showed stronger tree species preferences in late summer, and the positive impact of plot diversity doubled. In early summer, the positive diversity effect was tied to higher canopy cover in diverse plots, leading to higher spider densities. This indirect path strengthened in late summer, with an additional direct effect of plot diversity on spiders. Prey availability was higher in diverse plots but was not tied to spider density. Overall, diverse plots supported more predators, partly by increasing available habitat. Adopting planting strategies focused on species mixtures may better maintain higher trophic levels and ecosystem functions. 
    more » « less
  2. Abstract We introduce a new “ecosystem‐scale” experiment at the Cedar Creek Ecosystem Science Reserve in central Minnesota, USA to test long‐term ecosystem consequences of tree diversity and composition. The experiment—the largest of its kind in North America—was designed to provide guidance on forest restoration efforts that will advance carbon sequestration goals and contribute to biodiversity conservation and sustainability.The new Forest and Biodiversity (FAB2) experiment uses native tree species in varying levels of species richness, phylogenetic diversity and functional diversity planted in 100 m2and 400 m2plots at 1 m spacing, appropriate for testing long‐term ecosystem consequences. FAB2 was designed and established in conjunction with a prior experiment (FAB1) in which the same set of 12 species was planted in 16 m2plots at 0.5 m spacing. Both are adjacent to the BioDIV prairie‐grassland diversity experiment, enabling comparative investigations of diversity and ecosystem function relationships between experimental grasslands and forests at different planting densities and plot sizes.Within the first 6 years, mortality in 400 m2monoculture plots was higher than in 100 m2plots. The highest mortality occurred inTilia americanaandAcer negundomonocultures, but mortality for both species decreased with increasing plot diversity. These results demonstrate the importance of forest diversity in reducing mortality in some species and point to potential mechanisms, including light and drought stress, that cause tree mortality in vulnerable monocultures. The experiment highlights challenges to maintaining monoculture and low‐diversity treatments in tree mixture experiments of large extent.FAB2 provides a long‐term platform to test the mechanisms and processes that contribute to forest stability and ecosystem productivity in changing environments. Its ecosystem‐scale design, and accompanying R package, are designed to discern species and lineage effects and multiple dimensions of diversity to inform restoration of ecosystem functions and services from forests. It also provides a platform for improving remote sensing approaches, including Uncrewed Aerial Vehicles (UAVs) equipped with LiDAR, multispectral and hyperspectral sensors, to complement ground‐based monitoring. We aim for the experiment to contribute to international efforts to monitor and manage forests in the face of global change. 
    more » « less
  3. Abstract Planting diverse forests has been proposed as a means to increase long‐term carbon (C) sequestration while providing many co‐benefits. Positive tree diversity–productivity relationships are well established, suggesting more diverse forests will lead to greater aboveground C sequestration. However, the effects of tree diversity on belowground C storage have the potential to either complement or offset aboveground gains, especially during early stages of afforestation when potential exists for large losses in soil C due to soil decomposition. Thus, experimental tests of the effects of planted tree biodiversity on changes in whole‐ecosystem C balance are needed. Here, we present changes in above‐ and belowground C pools 6 years after the initiation of the Forests and Biodiversity experiment (FAB1), consisting of high‐density plots of one, two, five, or 12 tree species planted in a common garden. The trees included a diverse range of native species, including both needle‐leaf conifer and broadleaf angiosperm species, and both ectomycorrhizal and arbuscular mycorrhizal species. We quantified the effects of species richness, phylogenetic diversity, and functional diversity on aboveground woody C, as well as on mineral soil C accumulation, fine root C, and soil aggregation. Surprisingly, changes in aboveground woody C pools were uncorrelated to changes in mineral soil C pools, suggesting that variation in soil C accumulation was not driven by the quantity of plant litter inputs. Aboveground woody C accumulation was strongly driven by species and functional identity; however, plots with higher species richness and functional diversity accumulated more C in aboveground wood than expected based on monocultures. We also found weak but significant effects of tree species richness, identity, and mycorrhizal type on soil C accumulation. To assess the role of the microbial community in mediating these effects, we further compared changes in soil C pools to phospholipid fatty acid (PLFA) profiles. Soil C pools and accumulation were more strongly correlated with specific microbial clades than with total microbial biomass or plant diversity. Our results highlight rapidly emerging and microbially mediated effects of tree biodiversity on soil C storage in the early years of afforestation that are independent of gains in aboveground woody biomass. 
    more » « less
  4. Abstract Enhancing tree diversity may be important to fostering resilience to drought‐related climate extremes. So far, little attention has been given to whether tree diversity can increase the survival of trees and reduce its variability in young forest plantations.We conducted an analysis of seedling and sapling survival from 34 globally distributed tree diversity experiments (363,167 trees, 168 species, 3744 plots, 7 biomes) to answer two questions: (1) Do drought and tree diversity alter the mean and variability in plot‐level tree survival, with higher and less variable survival as diversity increases? and (2) Do species that survive poorly in monocultures survive better in mixtures and do specific functional traits explain monoculture survival?Tree species richness reduced variability in plot‐level survival, while functional diversity (Rao's Q entropy) increased survival and also reduced its variability. Importantly, the reduction in survival variability became stronger as drought severity increased. We found that species with low survival in monocultures survived comparatively better in mixtures when under drought. Species survival in monoculture was positively associated with drought resistance (indicated by hydraulic traits such as turgor loss point), plant height and conservative resource‐acquisition traits (e.g. low leaf nitrogen concentration and small leaf size).Synthesis.The findings highlight: (1) The effectiveness of tree diversity for decreasing the variability in seedling and sapling survival under drought; and (2) the importance of drought resistance and associated traits to explain altered tree species survival in response to tree diversity and drought. From an ecological perspective, we recommend mixing be considered to stabilize tree survival, particularly when functionally diverse forests with drought‐resistant species also promote high survival of drought‐sensitive species. 
    more » « less
  5. Abstract Legumes are an important component of plant diversity that modulate nitrogen (N) cycling in many terrestrial ecosystems. Limited knowledge of legume effects on soil N cycling and its response to global change factors and plant diversity hinders a general understanding of whether and how legumes broadly regulate the response of soil N availability to those factors. In a 17‐year study of perennial grassland species grown under ambient and elevated (+180 ppm) CO2and ambient and enriched (+4 g N m−2 year−1) N environments, we compared pure legume plots with plots dominated by or including other herbaceous functional groups (and containing one or four species) to assess the effect of legumes on N cycling (net N mineralization rate and inorganic N pools). We also examined the effects of numbers of legume species (from zero to four) in four‐species mixed plots on soil N cycling. We hypothesized that legumes would increase N mineralization rates most in those treatments with the greatest diversity and the greatest relative limitation by and competition for N. Results partially supported these hypotheses. Plots with greater dominance by legumes had greater soil nitrate concentrations and mineralization rates. Higher species richness significantly increased the impact of legumes on soil N metrics, with 349% and 505% higher mineralization rates and nitrate concentrations in four‐species plots containing legumes compared to legume‐free four‐species plots, in contrast to 185% and 129% greater values, respectively, in pure legume than nonlegume monoculture plots. N‐fertilized plots had greater legume effects on soil nitrate, but lower legume effects on net N mineralization. In contrast, neither elevated CO2nor its interaction with legumes affected net N mineralization. These results indicate that legumes markedly influence the response of soil N cycling to some, but not all, global change drivers. 
    more » « less