Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Forest canopy complexity (i.e., the three‐dimensional structure of the canopy) is often associated with increased species diversity as well as high primary productivity across natural forests. However, canopy complexity, tree diversity, and productivity are often confounded in natural forests, and the mechanisms of these relationships remain unclear. Here, we used two large tree diversity experiments in North America to assess three hypotheses: (1) increasing tree diversity leads to increased canopy complexity, (2) canopy complexity is positively related to tree productivity, and (3) the relationship between tree diversity and tree productivity is indirect and driven by the positive effects of canopy complexity. We found that increasing tree diversity from monocultures to mixtures of 12 species increases canopy complexity and productivity by up to 71% and 73%, respectively. Moreover, structural equation modeling indicates that the effects of tree diversity on productivity are indirect and mediated primarily by changes in internal canopy complexity. Ultimately, we suggest that increasing canopy complexity can be a major mechanism by which tree diversity enhances productivity in young forests.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Summary Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems.Using 11 tree‐diversity experiments, we tested tree species richness–community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal‐associated tree species in these relationships.Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees.Our study provides novel explanations for variations in diversity–productivity relationships by suggesting that tree–mycorrhiza interactions can shape productivity in mixed‐species forest ecosystems.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Abstract Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top‐down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top‐down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.more » « less
-
Abstract Human actions are decreasing the diversity and complexity of forests, and a mechanistic understanding of how these changes affect predators is needed to maintain ecosystem services, including pest regulation. Using a large‐scale tree diversity experiment, we investigate how spiders respond to trees growing in plots of single or mixed species combinations (4 or 12) by repeatedly sampling 540 trees spanning 15 species. In 2019 (6 years post‐establishment), spider responses to tree diversity varied by tree species. By 2021, diversity had a more consistently positive effect, with trees in 4‐ or 12‐species plots supporting 23% or 50% more spiders, respectively, compared to conspecifics in monocultures. Spiders showed stronger tree species preferences in late summer, and the positive impact of plot diversity doubled. In early summer, the positive diversity effect was tied to higher canopy cover in diverse plots, leading to higher spider densities. This indirect path strengthened in late summer, with an additional direct effect of plot diversity on spiders. Prey availability was higher in diverse plots but was not tied to spider density. Overall, diverse plots supported more predators, partly by increasing available habitat. Adopting planting strategies focused on species mixtures may better maintain higher trophic levels and ecosystem functions.more » « less
-
Abstract Efforts to catalog global biodiversity have often focused on aboveground taxonomic diversity, with limited consideration of belowground communities. However, diversity aboveground may influence the diversity of belowground communities and vice versa. In addition to taxonomic diversity, the structural diversity of plant communities may be related to the diversity of soil bacterial and fungal communities, which drive important ecosystem processes but are difficult to characterize across broad spatial scales. In forests, canopy structural diversity may influence soil microorganisms through its effects on ecosystem productivity and root architecture, and via associations between canopy structure, stand age, and species richness. Given that structural diversity is one of the few types of diversity that can be readily measured remotely (e.g., using light detection and ranging—LiDAR), establishing links between structural and microbial diversity could facilitate the detection of belowground biodiversity hotspots. We investigated the potential for using remotely sensed information about forest structural diversity as a predictor of soil microbial community richness and composition. We calculated LiDAR‐derived metrics of structural diversity as well as a suite of stand and soil properties from 38 forested plots across the central hardwoods region of Indiana, USA, to test whether forest canopy structure is linked with the community richness and diversity of four key soil microbial groups: bacteria, fungi, arbuscular mycorrhizal (AM) fungi, and ectomycorrhizal (EM) fungi. We found that the density of canopy vegetation is positively associated with the taxonomic richness (alpha diversity) of EM fungi, independent of changes in plant taxonomic richness. Further, structural diversity metrics were significantly correlated with the overall community composition of bacteria, EM, and total fungal communities. However, soil properties were the strongest predictors of variation in the taxonomic richness and community composition of microbial communities in comparison with structural diversity and tree species diversity. As remote sensing tools and algorithms are rapidly advancing, these results may have important implications for the use of remote sensing of vegetation structural diversity for management and restoration practices aimed at preserving belowground biodiversity.more » « less
-
Abstract Enhancing tree diversity may be important to fostering resilience to drought‐related climate extremes. So far, little attention has been given to whether tree diversity can increase the survival of trees and reduce its variability in young forest plantations.We conducted an analysis of seedling and sapling survival from 34 globally distributed tree diversity experiments (363,167 trees, 168 species, 3744 plots, 7 biomes) to answer two questions: (1) Do drought and tree diversity alter the mean and variability in plot‐level tree survival, with higher and less variable survival as diversity increases? and (2) Do species that survive poorly in monocultures survive better in mixtures and do specific functional traits explain monoculture survival?Tree species richness reduced variability in plot‐level survival, while functional diversity (Rao's Q entropy) increased survival and also reduced its variability. Importantly, the reduction in survival variability became stronger as drought severity increased. We found that species with low survival in monocultures survived comparatively better in mixtures when under drought. Species survival in monoculture was positively associated with drought resistance (indicated by hydraulic traits such as turgor loss point), plant height and conservative resource‐acquisition traits (e.g. low leaf nitrogen concentration and small leaf size).Synthesis.The findings highlight: (1) The effectiveness of tree diversity for decreasing the variability in seedling and sapling survival under drought; and (2) the importance of drought resistance and associated traits to explain altered tree species survival in response to tree diversity and drought. From an ecological perspective, we recommend mixing be considered to stabilize tree survival, particularly when functionally diverse forests with drought‐resistant species also promote high survival of drought‐sensitive species.more » « less
-
Abstract Acute resource pulses can have dramatic legacies for organismal growth, but the legacy effects of resource pulses on broader aspects of community structure and ecosystem processes are less understood. Mass emergence of periodical cicadas (Magicicadaspp.) provides an excellent opportunity to shed light on the influence of resource pulses on community and ecosystem dynamics: the adults emerge every 13 or 17 years in vast numbers over much of eastern North America, with a smaller but still significant number becoming incorporated into forest food webs. To study the potential effects of such arthropod resource pulse on primary production and belowground food webs, we added adult cicada bodies to the soil surface surrounding sycamore trees and assessed soil carbon and nitrogen concentrations, plant‐available nutrients, abundance and community composition of soil fauna occupying various trophic levels, decomposition rate of plant litter after 50 and 100 days, and tree performance for 4 years. Contrary to previous studies, we did not find significant cicada effects on tree performance despite observing higher plant‐available nutrient levels on cicada addition plots. Cicada addition did change the community composition of soil nematodes and increased the abundance of bacterial‐ and fungal‐feeding nematodes, while plant feeders, omnivores, and predators were not influenced. Altogether, acute resource pulses from decomposing cicadas propagated belowground to soil microbial‐feeding invertebrates and stimulated nutrient mineralization in the soil, but these effects did not transfer up to affect tree performance. We conclude that, despite their influence on soil food web and processes they carry out, even massive resource pulses from arthropods do not necessarily translate to NPP, supporting the view that ephemeral nutrient pulses can be attenuated relatively quickly despite being relatively large in magnitude.more » « less
-
Trees are an important carbon sink as they accumulate biomass through photosynthesis1 . Identifying tree species that grow fast is therefore commonly considered to be essential for efective climate change mitigation through forest planting. Although species characteristics are key information for plantation design and forest management, feld studies often fail to detect clear relationships between species functional traits and tree growth2 . Here, by consolidating four independent datasets and classifying the acquisitive and conservative species based on their functional trait values, we show that acquisitive tree species, which are supposedly fast-growing species, generally grow slowly in feld conditions. This discrepancy between the current paradigm and feld observations is explained by the interactions with environmental conditions that infuence growth. Acquisitive species require moist mild climates and fertile soils, conditions that are generally not met in the feld. By contrast, conservative species, which are supposedly slow-growing species, show generally higher realized growth due to their ability to tolerate unfavourable environmental conditions. In general, conservative tree species grow more steadily than acquisitive tree species in non-tropical forests. We recommend planting acquisitive tree species in areas where they can realize their fast-growing potential. In other regions, where environmental stress is higher, conservative tree species have a larger potential to fx carbon in their biomass.more » « lessFree, publicly-accessible full text available March 19, 2026
-
The tree diversity-productivity relationship is key to effective forest restoration and management; however, it remains unclear what role foliar chemical diversity and interactions between trees and their enemies play in driving this relationship. Trees produce chemical metabolites in their leaves that impact herbivory and pathogen infection. If trees alter the diversity of metabolites they produce when grown in more diverse communities, this could impact interactions with herbivores and pathogens. Ultimately, these tropic interactions with plant enemies, mediated by chemical diversity, could be important drivers of diversity-productivity relationships. Using a large-scale tree diversity experiment, we used a focal tree sampling design from 14 species across a gradient of tree species richness to assess the role of foliar chemicals and trophic interactions in the diversity-productivity relationship. We used untargeted metabolomics to measure foliar phytochemical diversity, monitored tree-enemy interactions, including foliar fungal pathogens, caterpillar communities, and deer browsing, and modelled their relationship to tree growth using path analysis. We unraveled significant evidence for top-down mediation of the diversity-productivity relationship driven primarily by herbivores rather than foliar pathogens, and contrasting effects of foliar chemical diversity on different enemy types. Individual trees growing in more diverse communities had higher phytochemical diversity and higher caterpillar richness, but lower leaf fungal pathogen richness. Leaf phytochemical diversity was positively associated with caterpillar richness and fungal pathogen richness, but negatively associated with browsing by white-tailed deer (Odocoileus virginianus). Path analysis revealed that phytochemical diversity, caterpillar richness, insect damage, and deer damage – but not foliar pathogens – all mediated positive indirect effects of tree richness on tree growth rate. Synthesis: We highlight the significant mediation of diversity-productivity relationships via contrasting effects of phytochemical diversity on plant-enemy interactions. Ultimately, our study underscores the importance of incorporating trophic interactions into biodiversity-ecosystem function studies.more » « less