skip to main content


Title: Unpacking the multimodal, multi‐scale data of the fast and slow lanes of the cardiac vagus through computational modelling
New Findings

What is the topic of this review?

The vagus nerve is a crucial regulator of cardiovascular homeostasis, and its activity is linked to heart health. Vagal activity originates from two brainstem nuclei: the nucleus ambiguus (fast lane) and the dorsal motor nucleus of the vagus (slow lane), nicknamed for the time scales that they require to transmit signals.

What advances does it highlight?

Computational models are powerful tools for organizing multi‐scale, multimodal data on the fast and slow lanes in a physiologically meaningful way. A strategy is laid out for how these models can guide experiments aimed at harnessing the cardiovascular health benefits of differential activation of the fast and slow lanes.

Abstract

The vagus nerve is a key mediator of brain–heart signaling, and its activity is necessary for cardiovascular health. Vagal outflow stems from the nucleus ambiguus, responsible primarily for fast, beat‐to‐beat regulation of heart rate and rhythm, and the dorsal motor nucleus of the vagus, responsible primarily for slow regulation of ventricular contractility. Due to the high‐dimensional and multimodal nature of the anatomical, molecular and physiological data on neural regulation of cardiac function, data‐derived mechanistic insights have proven elusive. Elucidating insights has been complicated further by the broad distribution of the data across heart, brain and peripheral nervous system circuits. Here we lay out an integrative framework based on computational modelling for combining these disparate and multi‐scale data on the two vagal control lanes of the cardiovascular system. Newly available molecular‐scale data, particularly single‐cell transcriptomic analyses, have augmented our understanding of the heterogeneous neuronal states underlying vagally mediated fast and slow regulation of cardiac physiology. Cellular‐scale computational models built from these data sets represent building blocks that can be combined using anatomical and neural circuit connectivity, neuronal electrophysiology, and organ/organismal‐scale physiology data to create multi‐system, multi‐scale models that enablein silicoexploration of the fast versus slow lane vagal stimulation. The insights from the computational modelling and analyses will guide new experimental questions on the mechanisms regulating the fast and slow lanes of the cardiac vagus toward exploiting targeted vagal neuromodulatory activity to promote cardiovascular health.

 
more » « less
NSF-PAR ID:
10419768
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Experimental Physiology
ISSN:
0958-0670
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Key points

    Right heart catheterization data from clinical records of heart transplant patients are used to identify patient‐specific models of the cardiovascular system.

    These patient‐specific cardiovascular models represent a snapshot of cardiovascular function at a given post‐transplant recovery time point.

    This approach is used to describe cardiac function in 10 heart transplant patients, five of which had multiple right heart catheterizations allowing an assessment of cardiac function over time.

    These patient‐specific models are used to predict cardiovascular function in the form of right and left ventricular pressure‐volume loops and ventricular power, an important metric in the clinical assessment of cardiac function.

    Outcomes for the longitudinally tracked patients show that our approach was able to identify the one patient from the group of five that exhibited post‐transplant cardiovascular complications.

    Abstract

    Heart transplant patients are followed with periodic right heart catheterizations (RHCs) to identify post‐transplant complications and guide treatment. Post‐transplant positive outcomes are associated with a steady reduction of right ventricular and pulmonary arterial pressures, toward normal levels of right‐side pressure (about 20 mmHg) measured by RHC. This study shows that more information about patient progression is obtained by combining standard RHC measures with mechanistic computational cardiovascular system models. The purpose of this study is twofold: to understand how cardiovascular system models can be used to represent a patient's cardiovascular state, and to use these models to track post‐transplant recovery and outcome. To obtain reliable parameter estimates comparable within and across datasets, we use sensitivity analysis, parameter subset selection, and optimization to determine patient‐specific mechanistic parameters that can be reliably extracted from the RHC data. Patient‐specific models are identified for 10 patients from their first post‐transplant RHC, and longitudinal analysis is carried out for five patients. Results of the sensitivity analysis and subset selection show that we can reliably estimate seven non‐measurable quantities; namely, ventricular diastolic relaxation, systemic resistance, pulmonary venous elastance, pulmonary resistance, pulmonary arterial elastance, pulmonary valve resistance and systemic arterial elastance. Changes in parameters and predicted cardiovascular function post‐transplant are used to evaluate the cardiovascular state during recovery of five patients. Of these five patients, only one showed inconsistent trends during recovery in ventricular pressure–volume relationships and power output. At the four‐year post‐transplant time point this patient exhibited biventricular failure along with graft dysfunction while the remaining four exhibited no cardiovascular complications.

     
    more » « less
  2. Key points

    Cardiac electrophysiology and Ca2+handling change rapidly during the fight‐or‐flight response to meet physiological demands.

    Despite dramatic differences in cardiac electrophysiology, the cardiac fight‐or‐flight response is highly conserved across species.

    In this study, we performed physiological sympathetic nerve stimulation (SNS) while optically mapping cardiac action potentials and intracellular Ca2+transients in innervated mouse and rabbit hearts.

    Despite similar heart rate and Ca2+handling responses between mouse and rabbit hearts, we found notable species differences in spatio‐temporal repolarization dynamics during SNS.

    Species‐specific computational models revealed that these electrophysiological differences allowed for enhanced Ca2+handling (i.e. enhanced inotropy) in each species, suggesting that electrophysiological responses are fine‐tuned across species to produce optimal cardiac fight‐or‐flight responses.

    Abstract

    Sympathetic activation of the heart results in positive chronotropy and inotropy, which together rapidly increase cardiac output. The precise mechanisms that produce the electrophysiological and Ca2+handling changes underlying chronotropic and inotropic responses have been studied in detail in isolated cardiac myocytes. However, few studies have examined the dynamic effects of physiological sympathetic nerve activation on cardiac action potentials (APs) and intracellular Ca2+transients (CaTs) in the intact heart. Here, we performed bilateral sympathetic nerve stimulation (SNS) in fully innervated, Langendorff‐perfused rabbit and mouse hearts. Dual optical mapping with voltage‐ and Ca2+‐sensitive dyes allowed for analysis of spatio‐temporal AP and CaT dynamics. The rabbit heart responded to SNS with a monotonic increase in heart rate (HR), monotonic decreases in AP and CaT duration (APD, CaTD), and a monotonic increase in CaT amplitude. The mouse heart had similar HR and CaT responses; however, a pronounced biphasic APD response occurred, with initial prolongation (50.9 ± 5.1 ms att = 0 svs. 60.6 ± 4.1 ms att = 15 s,P < 0.05) followed by shortening (46.5 ± 9.1 ms att = 60 s,P = NSvs. t = 0). We determined the biphasic APD response in mouse was partly due to dynamic changes in HR during SNS and was exacerbated by β‐adrenergic activation. Simulations with species‐specific cardiac models revealed that transient APD prolongation in mouse allowed for greater and more rapid CaT responses, suggesting more rapid increases in contractility; conversely, the rabbit heart requires APD shortening to produce optimal inotropic responses. Thus, while the cardiac fight‐or‐flight response is highly conserved between species, the underlying mechanisms orchestrating these effects differ significantly.

     
    more » « less
  3. Abstract

    To treat diseases associated with vagal nerve control of peripheral organs, it is necessary to selectively activate efferent and afferent fibers in the vagus. As a result of the nerve’s complex anatomy, fiber-specific activation proves challenging. Spatially selective neuromodulation using micromagnetic stimulation(μMS) is showing incredible promise. This neuromodulation technique uses microcoils(μcoils) to generate magnetic fields by powering them with a time-varying current. Following the principles of Faraday’s law of induction, a highly directional electric field is induced in the nerve from the magnetic field. In this study on rodent cervical vagus, a solenoidalμcoil was oriented at an angle to left and right branches of the nerve. The aim of this study was to measure changes in the mean arterial pressure (MAP) and heart rate (HR) followingμMS of the vagus. Theμcoils were powered by a single-cycle sinusoidal current varying in pulse widths(PW = 100, 500, and 1000μsec) at a frequency of 20 Hz. Under the influence of isoflurane,μMS of the left vagus at 1000μsec PW led to an average drop in MAP of 16.75 mmHg(n = 7). In contrast,μMS of the right vagus under isoflurane resulted in an average drop of 11.93 mmHg in the MAP(n = 7). Surprisingly, there were no changes in HR to either right or left vagalμMS suggesting the drop in MAP associated with vagusμMS was the result of stimulation of afferent, but not efferent fibers. In urethane anesthetized rats, no changes in either MAP or HR were observed uponμMS of the right or left vagus(n = 3). These findings suggest the choice of anesthesia plays a key role in determining the efficacy ofμMS on the vagal nerve. Absence of HR modulation uponμMS could offer alternative treatment options using VNS with fewer heart-related side-effects.

     
    more » « less
  4. Key points

    Pregnancy increases sympathetic nerve activity (SNA), although the mechanisms responsible for this remain unknown. We tested whether insulin or leptin, two sympathoexcitatory hormones increased during pregnancy, contribute to this.

    Transport of insulin across the blood–brain barrier in some brain regions, and into the cerebrospinal fluid (CSF), was increased, although brain insulin degradation was also increased. As a result, brain and CSF insulin levels were not different between pregnant and non‐pregnant rats.

    The sympathoexcitatory responses to insulin and leptin were abolished in pregnant rats.

    Blockade of arcuate nucleus insulin receptors did not lower SNA in pregnant or non‐pregnant rats.

    Collectively, these data suggest that pregnancy renders the brain resistant to the sympathoexcitatory effects of insulin and leptin, and that these hormones do not mediate pregnancy‐induced sympathoexcitation. Increased muscle SNA stimulates glucose uptake. Therefore, during pregnancy, peripheral insulin resistance coupled with blunted insulin‐ and leptin‐induced sympathoexcitation ensures adequate delivery of glucose to the fetus.

    Abstract

    Pregnancy increases basal sympathetic nerve activity (SNA), although the mechanism responsible for this remains unknown. Insulin and leptin are two sympathoexcitatory hormones that increase during pregnancy, yet, pregnancy impairs central insulin‐ and leptin‐induced signalling. Therefore, to test whether insulin or leptin contribute to basal sympathoexcitation or, instead, whether pregnancy induces resistance to the sympathoexcitatory effects of insulin and leptin, we investigated α‐chloralose anaesthetized late pregnant rats, which exhibited increases in lumbar SNA (LSNA), splanchnic SNA and heart rate (HR) compared to non‐pregnant animals. In pregnant rats, transport of insulin into cerebrospinal fluid and across the blood–brain barrier in some brain regions increased, although brain insulin degradation was also increased; brain and cerebrospinal fluid insulin levels were not different between pregnant and non‐pregnant rats. Althoughi.c.v.insulin increased LSNA and HR and baroreflex control of LSNA and HR in non‐pregnant rats, these effects were abolished in pregnant rats. In parallel, pregnancy completely prevented the actions of leptin with respect to increasing lumbar, splanchnic and renal SNA, as well as baroreflex control of SNA. Blockade of insulin receptors (with S961) in the arcuate nucleus, the site of action of insulin, did not decrease LSNA in pregnant rats, despite blocking the effects of exogenous insulin. Thus, pregnancy is associated with central resistance to insulin and leptin, and these hormones are not responsible for the increased basal SNA of pregnancy. Because increases in LSNA to skeletal muscle stimulates glucose uptake, blunted insulin‐ and leptin‐induced sympathoexcitation reinforces systemic insulin resistance, thereby increasing the delivery of glucose to the fetus.

     
    more » « less
  5. New Findings

    What is the central question of this study?

    Do endoperoxide 4 and thromboxane A2receptors, which are receptors for cyclooxygenase products of arachidonic metabolism, on thin fibre muscle afferents play a role in the chronic mechanoreflex sensitization present in rats with heart failure with reduced ejection fraction (HF‐rEF)?

    What is the main finding and its importance?

    The data do not support a role for endoperoxide 4 receptors or thromboxane A2receptors in the chronic mechanoreflex sensitization in HF‐rEF rats.

    Abstract

    We investigated the role of cyclooxygenase metabolite‐associated endoperoxide 4 receptors (EP4‐R) and thromboxane A2receptors (TxA2‐R) on thin fibre muscle afferents in the chronic mechanoreflex sensitization in rats with myocardial infarction‐induced heart failure with reduced ejection fraction (HF‐rEF). We hypothesized that injection of either the EP4‐R antagonist L‐161,982 (1 µg) or the TxA2‐R antagonist daltroban (80 µg) into the arterial supply of the hindlimb would reduce the increase in blood pressure and renal sympathetic nerve activity (RSNA) evoked in response to 30 s of static hindlimb skeletal muscle stretch (a model of isolated mechanoreflex activation) in decerebrate, unanaesthetized HF‐rEF rats but not sham‐operated control rats (SHAM). Ejection fraction was significantly reduced in HF‐rEF (45 ± 11%) compared to SHAM (83 ± 6%;P < 0.01) rats. In SHAM and HF‐rEF rats, we found that the EP4‐R antagonist had no effect on the peak increase in mean arterial pressure (peak ΔMAP SHAM= 6, pre: 15 ± 7, post: 15 ± 9,P = 0.99; HF‐rEF= 9, pre: 30 ± 11, post: 32 ± 15 mmHg,P = 0.84) or peak increase in RSNA (peak ΔRSNA SHAM pre: 33 ± 14, post: 47 ± 31%,P = 0.94; HF‐rEF, pre: 109 ± 47, post: 139 ± 150%,P = 0.76) response to stretch. Similarly, in SHAM and HF‐rEF rats, we found that the TxA2‐R antagonist had no effect on the peak ΔMAP (SHAM= 7, pre: 13 ± 7, post: 19 ± 14,P = 0.15; HF‐rEF= 14, pre: 24 ± 13, post: 21 ± 13 mmHg,P = 0.47) or peak ΔRSNA (SHAM pre: 52 ± 43, post: 57 ± 67%,P = 0.94; HF‐rEF, pre: 108 ± 93, post: 88 ± 72%,P = 0.30) response to stretch. The data do not support a role for EP4‐Rs or TxA2‐Rs in the chronic mechanoreflex sensitization in HF‐rEF.

     
    more » « less