skip to main content


Title: Search for Gravitational Waves from Scorpius X-1 in LIGO O3 Data with Corrected Orbital Ephemeris
Abstract

Improved observational constraints on the orbital parameters of the low-mass X-ray binary Scorpius X-1 were recently published in Killestein et al. In the process, errors were corrected in previous orbital ephemerides, which have been used in searches for continuous gravitational waves from Sco X-1 using data from the Advanced LIGO detectors. We present the results of a reanalysis of LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo using a model-based cross-correlation search. The corrected region of parameter space, which was not covered by previous searches, was about 1/3 as large as the region searched in the original O3 analysis, reducing the required computing time. We have confirmed that no detectable signal is present over a range of gravitational-wave frequencies from 25 to 1600 Hz, analogous to the null result of Abbott et al. Our search sensitivity is comparable to that of Abbott et al., who set upper limits corresponding, between 100 and 200 Hz, to an amplitudeh0of about 10−25when marginalized isotropically over the unknown inclination angle of the neutron star’s rotation axis, or less than 4 × 10−26assuming the optimal orientation.

 
more » « less
Award ID(s):
2110460
PAR ID:
10419807
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
949
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 117
Size(s):
Article No. 117
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo. This is a semicoherent search that uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25 to 1600 Hz, as well as ranges in orbital speed, frequency, and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100 and 200 Hz, correspond to an amplitude h 0 of about 10 −25 when marginalized isotropically over the unknown inclination angle of the neutron star’s rotation axis, or less than 4 × 10 −26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically marginalized upper limits are close to the predicted amplitude from about 70 to 100 Hz; the limits assuming that the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40 to 200 Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500 Hz or more. 
    more » « less
  2. Abstract Continuous gravitational waves are nearly monochromatic signals emitted by asymmetries in rotating neutron stars. These signals have not yet been detected. Deep all-sky searches for continuous gravitational waves from isolated neutron stars require significant computational expense. Deep searches for neutron stars in binary systems are even more expensive, but these targets are potentially more promising emitters, especially in the hundreds of Hertz region, where ground-based gravitational-wave detectors are most sensitive. We present here an all-sky search for continuous signals with frequency between 300 and 500 Hz, from neutron stars in binary systems with orbital periods between 15 and 60 days and projected semimajor axes between 10 and 40 lt-s. This is the only binary search on Advanced LIGO data that probes this frequency range. Compared to previous results, our search is over an order of magnitude more sensitive. We do not detect any signals, but our results exclude plausible and unexplored neutron star configurations, for example, neutron stars with relative deformations greater than 3 × 10 −6 within 1 kpc from Earth and r -mode emission at the level of α ∼ a few 10 −4 within the same distance. 
    more » « less
  3. Abstract

    We report on a new search for continuous gravitational waves from NS 1987A, the neutron star born in SN 1987A, using open data from Advanced LIGO and Virgo’s third observing run (O3). The search covered frequencies from 35–1050 Hz, more than 5 times the band of the only previous gravitational-wave search to constrain NS 1987A. Our search used an improved code and coherently integrated from 5.10 to 14.85 days depending on frequency. No astrophysical signals were detected. By expanding the frequency range and using O3 data, this search improved on strain upper limits from the previous search and was sensitive at the highest frequencies to ellipticities of 1.6 × 10−5andr-mode amplitudes of 4.4 × 10−4, both an order of magnitude improvement over the previous search and both well within the range of theoretical predictions.

     
    more » « less
  4. Abstract

    We report on a search for continuous gravitational waves (GWs) from NS 1987A, the neutron star born in SN 1987A. The search covered a frequency band of 75–275 Hz, included a wide range of spin-down parameters for the first time, and coherently integrated 12.8 days of LIGO data below 125 Hz and 8.7 days of LIGO data above 125 Hz from the second Advanced LIGO–Virgo observing run. We found no astrophysical signal. We set upper limits on GW emission as tight as an intrinsic strain of 2 × 10−25at 90% confidence. The large spin-down parameter space makes this search the first astrophysically consistent one for continuous GWs from NS 1987A. Our upper limits are the first consistent ones to beat an analog of the spin-down limit based on the age of the neutron star and hence are the first GW observations to put new constraints on NS 1987A.

     
    more » « less
  5. Abstract

    We present the results of an all-sky search for continuous gravitational waves in the public LIGO O3 data. The search covers signal frequencies 20.0 Hz ≤f≤ 800.0 Hz and a spin-down range down to −2.6 × 10−9Hz s−1, motivated by detectability studies on synthetic populations of Galactic neutron stars. This search is the most sensitive all-sky search to date in this frequency/spin-down region. The initial search was performed using the first half of the public LIGO O3 data (O3a), utilizing graphical processing units provided in equal parts by the volunteers of the Einstein@Home computing project and by the ATLAS cluster. After a hierarchical follow-up in seven stages, 12 candidates remain. Six are discarded at the eighth stage, by using the remaining O3 LIGO data (O3b). The surviving six can be ascribed to continuous-wave fake signals present in the LIGO data for validation purposes. We recover these fake signals with very high accuracy with our last stage search, which coherently combines all O3 data. Based on our results, we set upper limits on the gravitational-wave amplitudeh0and translate these into upper limits on the neutron star ellipticity and on ther-mode amplitude. The most stringent upper limits are at 203 Hz, withh0= 8.1 × 10−26at the 90% confidence level. Our results exclude isolated neutron stars rotating faster than 5 ms with ellipticities greater than5×108d100pcwithin a distancedfrom Earth andr-mode amplitudesα105d100pcfor neutron stars spinning faster than 150 Hz.

     
    more » « less