Abstract We report on a search for continuous gravitational waves (GWs) from NS 1987A, the neutron star born in SN 1987A. The search covered a frequency band of 75–275 Hz, included a wide range of spin-down parameters for the first time, and coherently integrated 12.8 days of LIGO data below 125 Hz and 8.7 days of LIGO data above 125 Hz from the second Advanced LIGO–Virgo observing run. We found no astrophysical signal. We set upper limits on GW emission as tight as an intrinsic strain of 2 × 10−25at 90% confidence. The large spin-down parameter space makes this search the first astrophysically consistent one for continuous GWs from NS 1987A. Our upper limits are the first consistent ones to beat an analog of the spin-down limit based on the age of the neutron star and hence are the first GW observations to put new constraints on NS 1987A.
more »
« less
Improved Upper Limits on Gravitational-wave Emission from NS 1987A in SNR 1987A
Abstract We report on a new search for continuous gravitational waves from NS 1987A, the neutron star born in SN 1987A, using open data from Advanced LIGO and Virgo’s third observing run (O3). The search covered frequencies from 35–1050 Hz, more than 5 times the band of the only previous gravitational-wave search to constrain NS 1987A. Our search used an improved code and coherently integrated from 5.10 to 14.85 days depending on frequency. No astrophysical signals were detected. By expanding the frequency range and using O3 data, this search improved on strain upper limits from the previous search and was sensitive at the highest frequencies to ellipticities of 1.6 × 10−5andr-mode amplitudes of 4.4 × 10−4, both an order of magnitude improvement over the previous search and both well within the range of theoretical predictions.
more »
« less
- PAR ID:
- 10490677
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 962
- Issue:
- 2
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L23
- Size(s):
- Article No. L23
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Improved observational constraints on the orbital parameters of the low-mass X-ray binary Scorpius X-1 were recently published in Killestein et al. In the process, errors were corrected in previous orbital ephemerides, which have been used in searches for continuous gravitational waves from Sco X-1 using data from the Advanced LIGO detectors. We present the results of a reanalysis of LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo using a model-based cross-correlation search. The corrected region of parameter space, which was not covered by previous searches, was about 1/3 as large as the region searched in the original O3 analysis, reducing the required computing time. We have confirmed that no detectable signal is present over a range of gravitational-wave frequencies from 25 to 1600 Hz, analogous to the null result of Abbott et al. Our search sensitivity is comparable to that of Abbott et al., who set upper limits corresponding, between 100 and 200 Hz, to an amplitudeh0of about 10−25when marginalized isotropically over the unknown inclination angle of the neutron star’s rotation axis, or less than 4 × 10−26assuming the optimal orientation.more » « less
-
Abstract We present the results of an all-sky search for continuous gravitational waves in the public LIGO O3 data. The search covers signal frequencies 20.0 Hz ≤f≤ 800.0 Hz and a spin-down range down to −2.6 × 10−9Hz s−1, motivated by detectability studies on synthetic populations of Galactic neutron stars. This search is the most sensitive all-sky search to date in this frequency/spin-down region. The initial search was performed using the first half of the public LIGO O3 data (O3a), utilizing graphical processing units provided in equal parts by the volunteers of the Einstein@Home computing project and by the ATLAS cluster. After a hierarchical follow-up in seven stages, 12 candidates remain. Six are discarded at the eighth stage, by using the remaining O3 LIGO data (O3b). The surviving six can be ascribed to continuous-wave fake signals present in the LIGO data for validation purposes. We recover these fake signals with very high accuracy with our last stage search, which coherently combines all O3 data. Based on our results, we set upper limits on the gravitational-wave amplitudeh0and translate these into upper limits on the neutron star ellipticity and on ther-mode amplitude. The most stringent upper limits are at 203 Hz, withh0= 8.1 × 10−26at the 90% confidence level. Our results exclude isolated neutron stars rotating faster than 5 ms with ellipticities greater than within a distancedfrom Earth andr-mode amplitudes for neutron stars spinning faster than 150 Hz.more » « less
-
Abstract We perform a search for continuous nearly monochromatic gravitational waves from the central compact objects associated with the supernova remnants Vela Jr. and G347.3. Over 1018different waveforms are considered, covering signal frequencies between 20 and 1300 Hz (20 and 400 Hz) for G347.3-0.5 (Vela Jr.) and a very broad range of frequency derivatives. The data set used for this first search is from the second observing run of LIGO (O2). Thousands of volunteers donating compute cycles through the computing project Einstein@Home have made this endeavor possible. Following the Einstein@Home search, we perform multistage follow-ups of over 5 million waveforms. The threshold for selecting candidates from the Einstein@Home search is such that, after the multistage follow-up, we do not expect any surviving candidate due to noise. The very last stage uses a different data set, namely, the LIGO O3 data. We find no significant signal candidate for either targets. Based on this null result, for G347.3-0.5, we set the most constraining upper limits to date on the amplitude of gravitational-wave signals, corresponding to deformations below 10−6in a large part of the search band. At the frequency of best strain sensitivity, near 161 Hz, we set 90% confidence upper limits on the gravitational-wave intrinsic amplitude of . Over most of the frequency range, our upper limits are a factor of 10 smaller than the indirect age-based upper limit. For Vela Jr., near 163 Hz, we set . Over most of the frequency range, our upper limits are a factor of 15 smaller than the indirect age-based upper limit. The Vela Jr. upper limits presented here are slightly less constraining than the most recent upper limits of R. Abbott et al., but they apply to a broader set of signals.more » « less
-
Abstract We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19, during the LIGO–Virgo–KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered ∼14% of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz, where we assume the gravitational-wave emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy 1 × 10−4M⊙c2and luminosity 2.6 × 10−4M⊙c2s−1for a source emitting at 82 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as 1.08, at frequencies above 1200 Hz, surpassing past results.more » « less
An official website of the United States government
