ABSTRACT Species are distributed in predictable ways in geographic spaces. The three principal factors that determine geographic distributions of species are biotic interactions (B), abiotic conditions (A), and dispersal ability or mobility (M). A species is expected to be present in areas that are accessible to it and that contain suitable sets of abiotic and biotic conditions for it to persist. A species' probability of presence can be quantified as a combination of responses toB,A, andMviaecological niche modeling (ENM; also frequently referred to as species distribution modeling or SDM). This analytical approach has been used broadly in ecology and biogeography, as well as in conservation planning and decision‐making, but commonly in the context of ‘natural’ settings. However, it is increasingly recognized that human impacts, including changes in climate, land cover, and ecosystem function, greatly influence species' geographic ranges. In this light, historical distinctions between natural and anthropogenic factors have become blurred, and a coupled human–natural landscape is recognized as the new norm. Therefore,B,A, andM(BAM) factors need to be reconsidered to understand and quantify species' distributions in a world with a pervasive signature of human impacts. Here, we present a framework, termed human‐influenced BAM (Hi‐BAM, for distributional ecology that (i) conceptualizes human impacts in the form of six drivers, and (ii) synthesizes previous studies to show how each driver modifies the natural BAM and species' distributions. Given the importance and prevalence of human impacts on species distributions globally, we also discuss implications of this framework for ENM/SDM methods, and explore strategies by which to incorporate increasing human impacts in the methodology. Human impacts are redefining biogeographic patterns; as such, future studies should incorporate signals of human impacts integrally in modeling and forecasting species' distributions.
more »
« less
Species distribution modelling supports the study of past, present and future biogeographies
Abstract Species distribution modelling (SDM), also called environmental or ecological niche modelling, has developed over the last 30 years as a widely used tool used in core areas of biogeography including historical biogeography, studies of diversity patterns, studies of species ranges, ecoregional classification, conservation assessment and projecting future global change impacts. In the 50th anniversary year ofJournal of Biogeography, I reflect on developments in species distribution modelling, illustrate how embedded the methodology has become in all areas of biogeography and speculate on future directions in the field. Challenges to species distribution modelling raised in this journal in 2006 have been addressed to a significant degree. Those challenges are clarification of the niche concept; improved sample design for species occurrence data; model parameterization; predictor selection; assessing model performance and transferability; and integrating correlative and process models of species distributions. SDM is used, often in conjunction with other evidence, to understand past species range dynamics, identify patterns and drivers of biological diversity, identify drivers of species range limits, define and delineate ecoregions, estimate the distributions of biodiversity elements in relation to protected status and to prioritize conservation action, and to forecast species range shifts in response to climate change and other global change scenarios. Areas of progress in SDM that may become more widely accessible and useful tools in biogeography include genetically informed models and community distribution models.
more »
« less
- Award ID(s):
- 1853697
- PAR ID:
- 10419819
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Biogeography
- Volume:
- 50
- Issue:
- 9
- ISSN:
- 0305-0270
- Format(s):
- Medium: X Size: p. 1533-1545
- Size(s):
- p. 1533-1545
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract 1. Species distribution models (SDMs) are crucial tools for understanding and predicting biodiversity patterns, yet they often struggle with limited data, biased sampling, and complex species-environment relationships. Here I present NicheFlow, a novel foundation model for SDMs that leverages generative AI to address these challenges and advance our ability to model and predict species distributions across taxa and environments. 2. NicheFlow employs a two-stage generative approach, combining species embeddings with two chained generative models, one to generate a distribution in environmental space, and a second to generate a distribution in geographic space. This architecture allows for the sharing of information across species and captures complex, non-linear relationships in environmental space. I trained NicheFlow on a comprehensive dataset of reptile distributions and evaluated its performance using both standard SDM metrics and zero-shot prediction tasks. 3. NicheFlow demonstrates good predictive performance, particularly for rare and data-deficient species. The model successfully generated plausible distributions for species not seen during training, showcasing its potential for zero-shot prediction. The learned species embeddings captured meaningful ecological information, revealing patterns in niche structure across taxa, latitude and range sizes. 4. As a proof-of-principle foundation model, NicheFlow represents a significant advance in species distribution modeling, offering a powerful tool for addressing pressing questions in ecology, evolution, and conservation biology. Its ability to model joint species distributions and generate hypothetical niches opens new avenues for exploring ecological and evolutionary questions, including ancestral niche reconstruction and community assembly processes. This approach has the potential to transform our understanding of biodiversity patterns and improve our capacity to predict and manage species distributions in the face of global change.more » « less
-
Abstract The paradigm of past climate-driven range shifts structuring the distribution of marine intraspecific biodiversity lacks replication in biological models exposed to comparable limiting conditions in independent regions. This may lead to confounding effects unlinked to climate drivers. We aim to fill in this gap by asking whether the global distribution of intraspecific biodiversity of giant kelp (Macrocystis pyrifera) is explained by past climate changes occurring across the two hemispheres. We compared the species’ population genetic diversity and structure inferred with microsatellite markers, with range shifts and long-term refugial regions predicted with species distribution modelling (SDM) from the last glacial maximum (LGM) to the present. The broad antitropical distribution ofMacrocystis pyriferais composed by six significantly differentiated genetic groups, for which current genetic diversity levels match the expectations of past climate changes. Range shifts from the LGM to the present structured low latitude refugial regions where genetic relics with higher and unique diversity were found (particularly in the Channel Islands of California and in Peru), while post-glacial expansions following ~ 40% range contraction explained extensive regions with homogenous reduced diversity. The estimated effect of past climate-driven range shifts was comparable between hemispheres, largely demonstrating that the distribution of intraspecific marine biodiversity can be structured by comparable evolutionary forces across the global ocean. Additionally, the differentiation and endemicity of regional genetic groups, confers high conservation value to these localized intraspecific biodiversity hotspots of giant kelp forests.more » « less
-
Abstract Climate change has the potential to disrupt species interactions across global ecosystems. Ectotherm–endotherm interactions may be especially prone to this risk due to the possible mismatch between the species in physiological response and performance. However, few studies have examined how changing temperatures might differentially impact species' niches or available suitable habitat when they have very different modes of thermoregulation. An ideal system for studying this interaction is the predator–prey system. In this study, we used ecological niche modeling to characterize the niche overlap and examine biogeography in past and future climate conditions of prairie rattlesnakes (Crotalus viridis) and Ord's kangaroo rats (Dipodomys ordii), an endotherm–ectotherm pair typifying a predator–prey species interaction. Our models show a high niche overlap between these two species (D = 0.863 andI = 0.979) and further affirm similar paleoecological distributions during the last glacial maximum (LGM) and mid‐Holocene (MH). Under future climate change scenarios, we found that prairie rattlesnakes may experience a reduction in overall suitable habitat (RCP 2.6 = −1.82%, 4.5 = −4.62%, 8.5 = −7.34%), whereas Ord's kangaroo rats may experience an increase (RCP 2.6 = 9.8%, 4.5 = 11.71%, 8.5 = 8.37%). We found a shared trend of stable suitable habitat at northern latitudes but reduced suitability in southern portions of the range, and we propose future monitoring and conservation be focused on those areas. Overall, we demonstrate a biogeographic example of how interacting ectotherm–endotherm species may have mismatched responses under climate change scenarios and the models presented here can serve as a starting point for further investigation into the biogeography of these systems.more » « less
-
The Saccharomycotina yeasts (“yeasts” hereafter) are a fungal clade of scientific, economic, and medical significance. Yeasts are highly ecologically diverse, found across a broad range of environments in every biome and continent on earth; however, little is known about what rules govern the macroecology of yeast species and their range limits in the wild. Here, we trained machine learning models on 12,816 terrestrial occurrence records and 96 environmental variables to infer global distribution maps at ~1 km2resolution for 186 yeast species (~15% of described species from 75% of orders) and to test environmental drivers of yeast biogeography and macroecology. We found that predicted yeast diversity hotspots occur in mixed montane forests in temperate climates. Diversity in vegetation type and topography were some of the greatest predictors of yeast species richness, suggesting that microhabitats and environmental clines are key to yeast diversity. We further found that range limits in yeasts are significantly influenced by carbon niche breadth and range overlap with other yeast species, with carbon specialists and species in high-diversity environments exhibiting reduced geographic ranges. Finally, yeasts contravene many long-standing macroecological principles, including the latitudinal diversity gradient, temperature-dependent species richness, and a positive relationship between latitude and range size (Rapoport’s rule). These results unveil how the environment governs the global diversity and distribution of species in the yeast subphylum. These high-resolution models of yeast species distributions will facilitate the prediction of economically relevant and emerging pathogenic species under current and future climate scenarios.more » « less
An official website of the United States government
