skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The past, present, and future of predator–prey interactions in a warming world: Using species distribution modeling to forecast ectotherm–endotherm niche overlap
Abstract Climate change has the potential to disrupt species interactions across global ecosystems. Ectotherm–endotherm interactions may be especially prone to this risk due to the possible mismatch between the species in physiological response and performance. However, few studies have examined how changing temperatures might differentially impact species' niches or available suitable habitat when they have very different modes of thermoregulation. An ideal system for studying this interaction is the predator–prey system. In this study, we used ecological niche modeling to characterize the niche overlap and examine biogeography in past and future climate conditions of prairie rattlesnakes (Crotalus viridis) and Ord's kangaroo rats (Dipodomys ordii), an endotherm–ectotherm pair typifying a predator–prey species interaction. Our models show a high niche overlap between these two species (D = 0.863 andI = 0.979) and further affirm similar paleoecological distributions during the last glacial maximum (LGM) and mid‐Holocene (MH). Under future climate change scenarios, we found that prairie rattlesnakes may experience a reduction in overall suitable habitat (RCP 2.6 = −1.82%, 4.5 = −4.62%, 8.5 = −7.34%), whereas Ord's kangaroo rats may experience an increase (RCP 2.6 = 9.8%, 4.5 = 11.71%, 8.5 = 8.37%). We found a shared trend of stable suitable habitat at northern latitudes but reduced suitability in southern portions of the range, and we propose future monitoring and conservation be focused on those areas. Overall, we demonstrate a biogeographic example of how interacting ectotherm–endotherm species may have mismatched responses under climate change scenarios and the models presented here can serve as a starting point for further investigation into the biogeography of these systems.  more » « less
Award ID(s):
1856404
PAR ID:
10542820
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology and Evolution
Volume:
14
Issue:
3
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract ContextClimate change is altering suitable habitat distributions of many species at high latitudes. Fleshy fruit-producing plants (hereafter, “berry plants”) are important in arctic food webs and as subsistence resources for human communities, but their response to a warming and increasingly variable climate at a landscape scale has not yet been examined. ObjectivesWe aimed to identify environmental determinants of berry plant distribution and predict how climate change might shift these distributions. MethodsWe used species distribution models to identify characteristics and predict the distribution of suitable habitat under current (2006–2013) and future climate conditions (2081–2100; representative concentration pathways 4.5, 6.0, & 8.5) for five berry plant species:Vaccinium uliginosumL.,Empetrum nigrumL.,Rubus chamaemorusL.,Vaccinium vitis-idaeaL., andViburnum edule(Michx.) Raf.. ResultsElevation, soil characteristics, and January and July temperatures were important drivers of habitat distributions. Future suitable habitat predictions showed net declines in suitable habitat area for all species modeled under almost all future climate scenarios tested. ConclusionsOur work contributes to understanding potential geographic shifts in suitable berry plant habitat with climate change at a landscape scale. Shifting and retracting distributions may alter where communities can harvest, suggesting that access to these resources may become restricted in the future. Our prediction maps may help inform climate adaptation planning as communities anticipate shifting access to harvesting locations. 
    more » « less
  2. Abstract Shrub encroachment is transforming arid and semiarid grasslands worldwide. Such transitions should influence predator–prey interactions because vegetation cover often affects risk perception by prey and contributes to their landscape of fear. We examined how the landscape of fear of two desert lagomorphs (black‐tailed jackrabbit,Lepus californicus; desert cottontail,Sylvilagus audubonii) changes across grassland‐to‐shrubland gradients at Jornada Basin Long Term Ecological Research site in the Chihuahuan Desert of southern New Mexico. We test whether shrub encroachment shapes risk differently for these two lagomorphs because of differences in body size and predator escape tactics. We also examine whether an ecosystem engineer of grasslands (banner‐tailed kangaroo rat,Dipodomys spectabilis) mediates risk perception through the creation of escape refuge and whether trade‐offs exist between shrub encroachment and the local reduction of banner‐tailed kangaroo rats caused by shrub expansion. We measured perceived predation risk with flight initiation distances (FIDs) and then used structural equation modeling to tease apart the hypothesized direct and indirect pathways for how shrub encroachment could affect perceived risk. A total negative effect of shrub cover on FID was supported for jackrabbits and cottontails, suggesting both species perceive shrubbier habitat as safer. Increases in fine‐scale concealment also reduced risk for cottontails, but not jackrabbits, likely because cottontails rely on crypsis to avoid predator detection whereas jackrabbits rely on speed and agility to outrun predators. Perceived risk was reduced when individuals were near kangaroo rat mounds only for cottontails because the smaller species can use banner‐tailed kangaroo rat mounds as refuge. Shrub encroachment greatly reduced the availability of mounds. Thus, a trade‐off exists for cottontails in which shrub encroachment directly reduced perceived risk, but indirectly increased perceived risk through the local extirpation of an ecosystem engineer. Our work illustrates how the expansion of shrub encroachment can create a dynamic landscape of fear for populations of prey species involving direct and indirect pathways contingent on prey body size, escape tactics, and activities of an ecosystem engineer. 
    more » « less
  3. Abstract Predators must contend with numerous challenges to successfully find and subjugate prey. Complex traits related to hunting are partially controlled by a large number of co‐evolved genes, which may be disrupted in hybrids. Accordingly, research on the feeding ecology of animals in hybrid zones has shown that hybrids sometimes exhibit transgressive or novel behaviors, yet for many taxa, empirical studies of predation and diet across hybrid zones are lacking. We undertook the first such field study for a hybrid zone between two snake species, the Mojave rattlesnake (Crotalus scutulatus) and the prairie rattlesnake (Crotalus viridis). Specifically, we leveraged established field methods to quantify the hunting behaviors of animals, their prey communities, and the diet of individuals across the hybrid zone in southwestern New Mexico, USA. We found that, even though hybrids had significantly lower body condition indices than snakes from either parental group, hybrids were generally similar to non‐hybrids in hunting behavior, prey encounter rates, and predatory attack and success. We also found that, compared toC. scutulatus,C. viridiswas significantly more active while hunting at night and abandoned ambush sites earlier in the morning, and hybrids tended to be moreviridis‐like in this respect. Prey availability was similar across the study sites, including within the hybrid zone, with kangaroo rats (Dipodomysspp.) as the most common small mammal, both in habitat surveys and the frequency of encounters with hunting rattlesnakes. Analysis of prey remains in stomachs and feces also showed broad similarity in diets, with all snakes preying primarily on small mammals and secondarily on lizards. Taken together, our results suggest that the significantly lower body condition of hybrids does not appear to be driven by differences in their hunting behavior or diet and may instead relate to metabolic efficiency or other physiological traits we have not yet identified. 
    more » « less
  4. The critically endangered North Atlantic right whale (Eubalaena glacialis) faces significant anthropogenic mortality. Recent climatic shifts in traditional habitats have caused abrupt changes in right whale distributions, challenging traditional conservation strategies. Tools that can help anticipate new areas where E. glacialis might forage could inform proactive management. In this study, we trained boosted regression tree algorithms with fine-resolution modeled environmental covariates to build prey copepod (Calanus) species-specific models of historical and future distributions of E. glacialis foraging habitat on the Northwest Atlantic Shelf, from the Mid-Atlantic Bight to the Labrador Shelf. We determined foraging suitability using E. glacialis foraging thresholds for Calanus spp. adjusted by a bathymetry-dependent bioenergetic correction factor based on known foraging behavior constraints. Models were then projected to 2046–2065 and 2066–2085 modeled climatologies for representative concentration pathway scenarios RCP 4.5 and RCP 8.5 with the goal of identifying potential shifts in foraging habitat. The models had generally high performance (area under the receiver operating characteristic curve > 0.9) and indicated ocean bottom conditions and bathymetry as important covariates. Historical (1990–2015) projections aligned with known areas of high foraging habitat suitability as well as potential suitable areas on the Labrador Shelf. Future projections suggested that the suitability of potential foraging habitat would decrease in parts of the Gulf of Maine and southwestern Gulf of Saint Lawrence, while potential habitat would be maintained or improved on the western Scotian Shelf, in the Bay of Fundy, on the Newfoundland and Labrador shelves, and at some locations along the continental shelf breaks. Overall, suitable habitat is projected to decline. Directing some survey efforts toward emerging potential foraging habitats can enable conservation management to anticipate the type of distribution shifts that have led to high mortality in the past. 
    more » « less
  5. Abstract Crop phenology regulates seasonal carbon and water fluxes between croplands and the atmosphere and provides essential information for monitoring and predicting crop growth dynamics and productivity. However, under rapid climate change and more frequent extreme events, future changes in crop phenological shifts have not been well investigated and fully considered in earth system modeling and regional climate assessments. Here, we propose an innovative approach combining remote sensing imagery and machine learning (ML) with climate and survey data to predict future crop phenological shifts across the US corn and soybean systems. Specifically, our projected findings demonstrate distinct acceleration patterns—under the RCP 4.5/RCP 8.5 scenarios, corn planting, silking, maturity, and harvesting stages would significantly advance by 0.94/1.66, 1.13/2.45, 0.89/2.68, and 1.04/2.16 days/decade during 2021–2099, respectively. Soybeans exhibit more muted responses with phenological stages showing relatively smaller negative trends (0.59, 1.08, 0.07, and 0.64 days/decade under the RCP 4.5 vs. 1.24, 1.53, 0.92, and 1.04 days/decade under the RCP 8.5). These spatially explicit projections illustrate how crop phenology would respond to future climate change, highlighting widespread and progressively earlier phenological timing. Based on these findings, we call for a specific effort to quantify the cascading effects of future phenology shifts on crop yield and carbon, water, and energy balances and, accordingly, craft targeted adaptive strategies. 
    more » « less