skip to main content


Title: Environmental variation across multiple spatial scales and temporal lags influences Hendra virus spillover
Abstract

Pathogens can spill over and infect new host species by overcoming a series of ecological and biological barriers. Hendra virus (HeV) circulates in Australian flying foxes and provides a data‐rich study system for identifying environmental drivers underlying spillover events. The frequency of spillover events to horses has varied interannually since the virus was first discovered in 1994. These observations suggest that HeV spillover events are driven, in part, by environmental factors, including loss of flying fox habitat and climate variability.

We explicitly examine the impact of environmental variation on the risk of HeV spillover at three spatial scales relevant to this system. We use a dataset of 60 spillover events and boosted regression tree methods to identify environmental features (including concurrent and lagged temperature, rainfall, vegetation indices, land cover, and climate indices) at three spatial scales (1‐km, 20‐km, 100‐km radii) associated with horse contacts and reservoir species ecology.

We find that temperature, local (1‐km radius) human population density, and landscape (100‐km radius) forest cover and pasture are the most influential environmental features associated with HeV spillover risk. By including multiple spatial scales and temporal lags in environmental features, we can more accurately quantify risk across space and time than with models that use a single scale. For example, high quality vegetation at the local scale and within a foraging radius (20‐km) in the concurrent month and previous years, combined with poorer quality vegetation at the landscape scale in the concurrent month increase risk of HeV spillover. These and other environmental associations likely influence the dynamic foraging behaviour of reservoir flying foxes and drive contacts that facilitate spillover into horse populations.

Synthesis and application: Current management of HeV spillover focuses on local‐scale interventions – primarily through vaccination and detection of infected horses. Our study finds that HeV spillover risk is also driven by environmental changes over much larger scales and demonstrates management practices would benefit from incorporating landscape interventions alongside local interventions.

 
more » « less
Award ID(s):
2231624 2133763
NSF-PAR ID:
10419827
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Applied Ecology
Volume:
60
Issue:
7
ISSN:
0021-8901
Page Range / eLocation ID:
p. 1457-1467
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Context

    Environmental change impacts natural ecosystems and wildlife populations. In Australia, native forests have been heavily cleared and the local emergence of Hendra virus (HeV) has been linked to land-use change, winter habitat loss, and changing bat behavior.

    Objectives

    We quantified changes in landscape factors for black flying foxes (Pteropus alecto), a reservoir host of HeV, in sub-tropical Queensland, Australia from 2000–2020. We hypothesized that native winter habitat loss and native remnant forest loss were greatest in areas with the most human population growth.

    Methods

    We measured the spatiotemporal change in human population size and native ‘remnant’ woody vegetation extent. We assessed changes in the observedP. alectopopulation and native winter habitats in bioregions whereP. alectoare observed roosting in winter. We assessed changes in the amount of remnant vegetation across bioregions and within 50 km foraging buffers around roosts.

    Results

    Human populations in these bioregions grew by 1.18 M people, mostly within 50 km foraging areas around roosts. Remnant forest extent decreased overall, but regrowth was observed when policy restricted vegetation clearing. Winter habitats were continuously lost across all spatial scales. Observed roost counts ofP. alectodeclined.

    Conclusion

    Native remnant forest loss and winter habitat loss were not directly linked to spatial human population growth. Rather, most remnant vegetation was cleared for indirect human use. We observed forest loss and regrowth in response to state land clearing policies. Expanded flying fox population surveys will help better understand how land-use change has impactedP. alectodistribution and Hendra virus spillover.

     
    more » « less
  2. Understanding environmental factors driving spatiotemporal patterns of disease can improve risk mitigation strategies. Hendra virus (HeV), discovered in Australia in 1994, spills over from bats (Pteropus sp.) to horses and thence to humans. Below latitude - 22, almost all spillover events to horses occur during winter, and above this latitude spillover is aseasonal. We generated a statistical model of environmental drivers of HeV spillover per month. The model reproduced the spatiotemporal pattern of spillover risk between 1994 and 2015. The model was generated with an ensemble of methods for presence–absence data (boosted regression trees, random forests and logistic regression). Presences were the locations of horse cases, and absences per spatial unit (2.7 9 2.7 km pixels without spillover) were sampled with the horse census of Queensland and New South Wales. The most influential factors indicate that spillover is associated with both cold-dry and wet conditions. Bimodal responses to several variables suggest spillover involves two systems: one above and one below a latitudinal area close to - 22. Northern spillovers are associated with cold-dry and wet conditions, and southern with cold-dry conditions. Biologically, these patterns could be driven by immune or behavioural changes in response to food shortage in bats and horse husbandry. Future research should look for differences in these traits between seasons in the two latitudinal regions. Based on the predicted risk patterns by latitude, we recommend enhanced preventive management for horses from March to November below latitude 22 south. 
    more » « less
  3. Abstract

    Models of host–pathogen interactions help to explain infection dynamics in wildlife populations and to predict and mitigate the risk of zoonotic spillover. Insights from models inherently depend on the way contacts between hosts are modelled, and crucially, how transmission scales with animal density.

    Bats are important reservoirs of zoonotic disease and are among the most gregarious of all mammals. Their population structures can be highly heterogeneous, underpinned by ecological processes across different scales, complicating assumptions regarding the nature of contacts and transmission. Although models commonly parameterise transmission using metrics of total abundance, whether this is an ecologically representative approximation of host–pathogen interactions is not routinely evaluated.

    We collected a 13‐month dataset of tree‐roostingPteropusspp. from 2,522 spatially referenced trees across eight roosts to empirically evaluate the relationship between total roost abundance and tree‐level measures of abundance and density—the scale most likely to be relevant for virus transmission. We also evaluate whether roost features at different scales (roost level, subplot level, tree level) are predictive of these local density dynamics.

    Roost‐level features were not representative of tree‐level abundance (bats per tree) or tree‐level density (bats per m2or m3), with roost‐level models explaining minimal variation in tree‐level measures. Total roost abundance itself was either not a significant predictor (tree‐level 3D density) or only weakly predictive (tree‐level abundance).

    This indicates that basic measures, such as total abundance of bats in a roost, may not provide adequate approximations for population dynamics at scales relevant for transmission, and that alternative measures are needed to compare transmission potential between roosts. From the best candidate models, the strongest predictor of local population structure was tree density within roosts, where roosts with low tree density had a higher abundance but lower density of bats (more spacing between bats) per tree.

    Together, these data highlight unpredictable and counterintuitive relationships between total abundance and local density. More nuanced modelling of transmission, spread and spillover from bats likely requires alternative approaches to integrating contact structure in host–pathogen models, rather than simply modifying the transmission function.

     
    more » « less
  4. Abstract

    Rich pollinator assemblages are documented in some cities despite habitat fragmentation and degradation, suggesting that urban areas have potential as pollinator refuges. To inform urban bee conservation, we assessed local‐ and landscape‐scale drivers of bee community composition and foraging within vacant lots of Cleveland, Ohio, USA. Cleveland is a shrinking city, a type of urban area that has an over‐abundance of vacated greenspaces as a result of population loss and subsequent demolition of abandoned infrastructure. As such, Cleveland represents over 350 post‐industrial cities worldwide that are all promising locations for bee conservation.

    Across a network of 56 residential vacant lots (each ~30 m × 12 m), we established seven unique habitats, including seeded native prairies, to investigate how vegetation management and landscape context at a 1,500 m radius influenced urban bee communities. We assessed the distribution of several bee functional traits, diversity and abundance with pan and malaise traps. Foraging frequency was determined with plant–pollinator interaction networks derived from vacuum collections of bees at flowers.

    We observed higher bee richness and increased abundance of smaller sized bees as the size of surrounding greenspace patches increased within a 1,500 m radius landscape buffer. Within habitats, seeded treatments had no effect on bees but greater plant biomass and shorter vegetation were correlated with increased bee richness and abundance. Plant–pollinator interaction networks were dominated by spontaneous non‐native vegetation, illustrating that this forage supports urban bees.

    Synthesis and applications. Our study indicates that proximity to larger greenspaces within an urban landscape promotes overall bee richness and increased occurrence of smaller bee species within residential vacant lots. While we did not observe our seeded native plants enhancing the bee community, native wildflowers were still establishing during the study and may have a greater influence when blooming at higher densities. Importantly, spontaneous non‐native vegetation provided the majority of urban bee's forage. Thus, vacant land that is minimally managed and vegetated with what many consider undesirable ‘weeds’ provides valuable habitat for bee conservation in cities.

     
    more » « less
  5. Becker, Daniel (Ed.)
    The black flying fox ( Pteropus alecto ) is a natural reservoir for Hendra virus, a paramyxovirus that causes fatal infections in humans and horses in Australia. Increased excretion of Hendra virus by flying foxes has been hypothesized to be associated with physiological or energetic stress in the reservoir hosts. The objective of this study was to explore the leukocyte profiles of wild-caught P . alecto , with a focus on describing the morphology of each cell type to facilitate identification for clinical purposes and future virus spillover research. To this end, we have created an atlas of images displaying the commonly observed morphological variations across each cell type. We provide quantitative and morphological information regarding the leukocyte profiles in bats captured at two roost sites located in Redcliffe and Toowoomba, Queensland, Australia, over the course of two years. We examined the morphology of leukocytes, platelets, and erythrocytes of P . alecto using cytochemical staining and characterization of blood films through light microscopy. Leukocyte profiles were broadly consistent with previous studies of P . alecto and other Pteropus species. A small proportion of individual samples presented evidence of hemoparasitic infection or leukocyte morphological traits that are relevant for future research on bat health, including unique large granular lymphocytes. Considering hematology is done by visual inspection of blood smears, examples of the varied cell morphologies are included as a visual guide. To the best of our knowledge, this study provides the first qualitative assessment of P . alecto leukocytes, as well as the first set of published hematology reference images for this species. 
    more » « less