Summary Randomized experiments have been the gold standard for drawing causal inference. The conventional model-based approach has been one of the most popular methods of analysing treatment effects from randomized experiments, which is often carried out through inference for certain model parameters. In this paper, we provide a systematic investigation of model-based analyses for treatment effects under the randomization-based inference framework. This framework does not impose any distributional assumptions on the outcomes, covariates and their dependence, and utilizes only randomization as the reasoned basis. We first derive the asymptotic theory for $ Z $-estimation in completely randomized experiments, and propose sandwich-type conservative covariance estimation. We then apply the developed theory to analyse both average and individual treatment effects in randomized experiments. For the average treatment effect, we consider model-based, model-imputed and model-assisted estimation strategies, where the first two strategies can be sensitive to model misspecification or require specific methods for parameter estimation. The model-assisted approach is robust to arbitrary model misspecification and always provides consistent average treatment effect estimation. We propose optimal ways to conduct model-assisted estimation using generally nonlinear least squares for parameter estimation. For the individual treatment effects, we propose directly modelling the relationship between individual effects and covariates, and discuss the model’s identifiability, inference and interpretation allowing for model misspecification.
more »
« less
Covariate‐adjusted response‐adaptive designs based on semiparametric approaches
Abstract We consider theoretical and practical issues for innovatively using a large number of covariates in clinical trials to achieve various design objectives without model misspecification. Specifically, we propose a new family of semiparametric covariate‐adjusted response‐adaptive randomization (CARA) designs and we use the target maximum likelihood estimation (TMLE) to analyze the correlated data from CARA designs. Our approach can flexibly achieve multiple objectives and correctly incorporate the effect of a large number of covariates on the responses without model misspecification. We also obtain the consistency and asymptotic normality of the target parameters, allocation probabilities, and allocation proportions. Numerical studies demonstrate that our approach has advantages over existing approaches, even when the data‐generating distribution is complicated.
more »
« less
- Award ID(s):
- 2014951
- PAR ID:
- 10419842
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Biometrics
- ISSN:
- 0006-341X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary The problem of estimating the average treatment effects is important when evaluating the effectiveness of medical treatments or social intervention policies. Most of the existing methods for estimating the average treatment effect rely on some parametric assumptions about the propensity score model or the outcome regression model one way or the other. In reality, both models are prone to misspecification, which can have undue influence on the estimated average treatment effect. We propose an alternative robust approach to estimating the average treatment effect based on observational data in the challenging situation when neither a plausible parametric outcome model nor a reliable parametric propensity score model is available. Our estimator can be considered as a robust extension of the popular class of propensity score weighted estimators. This approach has the advantage of being robust, flexible, data adaptive, and it can handle many covariates simultaneously. Adopting a dimension reduction approach, we estimate the propensity score weights semiparametrically by using a non-parametric link function to relate the treatment assignment indicator to a low-dimensional structure of the covariates which are formed typically by several linear combinations of the covariates. We develop a class of consistent estimators for the average treatment effect and study their theoretical properties. We demonstrate the robust performance of the estimators on simulated data and a real data example of investigating the effect of maternal smoking on babies’ birth weight.more » « less
-
Abstract BackgroundThe development of public health policy is inextricably linked with governance structure. In our increasingly globalized world, human migration and infectious diseases often span multiple administrative jurisdictions that might have different systems of government and divergent management objectives. However, few studies have considered how the allocation of regulatory authority among jurisdictions can affect disease management outcomes. MethodsHere we evaluate the relative merits of decentralized and centralized management by developing and numerically analyzing a two-jurisdictionSIRSmodel that explicitly incorporates migration. In our model, managers choose between vaccination, isolation, medication, border closure, and a travel ban on infected individuals while aiming to minimize either the number of cases or the number of deaths. ResultsWe consider a variety of scenarios and show how optimal strategies differ for decentralized and centralized management levels. We demonstrate that policies formed in the best interest of individual jurisdictions may not achieve global objectives, and identify situations where locally applied interventions can lead to an overall increase in the numbers of cases and deaths. ConclusionsOur approach underscores the importance of tailoring disease management plans to existing regulatory structures as part of an evidence-based decision framework. Most importantly, we demonstrate that there needs to be a greater consideration of the degree to which governance structure impacts disease outcomes.more » « less
-
Summary In screening applications involving low-prevalence diseases, pooling specimens (e.g., urine, blood, swabs, etc.) through group testing can be far more cost effective than testing specimens individually. Estimation is a common goal in such applications and typically involves modeling the probability of disease as a function of available covariates. In recent years, several authors have developed regression methods to accommodate the complex structure of group testing data but often under the assumption that covariate effects are linear. Although linearity is a reasonable assumption in some applications, it can lead to model misspecification and biased inference in others. To offer a more flexible framework, we propose a Bayesian generalized additive regression approach to model the individual-level probability of disease with potentially misclassified group testing data. Our approach can be used to analyze data arising from any group testing protocol with the goal of estimating multiple unknown smooth functions of covariates, standard linear effects for other covariates, and assay classification accuracy probabilities. We illustrate the methods in this article using group testing data on chlamydia infection in Iowa.more » « less
-
Summary Model selection is crucial both to high-dimensional learning and to inference for contemporary big data applications in pinpointing the best set of covariates among a sequence of candidate interpretable models. Most existing work implicitly assumes that the models are correctly specified or have fixed dimensionality, yet both model misspecification and high dimensionality are prevalent in practice. In this paper, we exploit the framework of model selection principles under the misspecified generalized linear models presented in Lv & Liu (2014), and investigate the asymptotic expansion of the posterior model probability in the setting of high-dimensional misspecified models. With a natural choice of prior probabilities that encourages interpretability and incorporates the Kullback–Leibler divergence, we suggest using the high-dimensional generalized Bayesian information criterion with prior probability for large-scale model selection with misspecification. Our new information criterion characterizes the impacts of both model misspecification and high dimensionality on model selection. We further establish the consistency of covariance contrast matrix estimation and the model selection consistency of the new information criterion in ultrahigh dimensions under some mild regularity conditions. Our numerical studies demonstrate that the proposed method enjoys improved model selection consistency over its main competitors.more » « less
An official website of the United States government
