skip to main content

Title: Governance structure affects transboundary disease management under alternative objectives
Abstract Background

The development of public health policy is inextricably linked with governance structure. In our increasingly globalized world, human migration and infectious diseases often span multiple administrative jurisdictions that might have different systems of government and divergent management objectives. However, few studies have considered how the allocation of regulatory authority among jurisdictions can affect disease management outcomes.


Here we evaluate the relative merits of decentralized and centralized management by developing and numerically analyzing a two-jurisdictionSIRSmodel that explicitly incorporates migration. In our model, managers choose between vaccination, isolation, medication, border closure, and a travel ban on infected individuals while aiming to minimize either the number of cases or the number of deaths.


We consider a variety of scenarios and show how optimal strategies differ for decentralized and centralized management levels. We demonstrate that policies formed in the best interest of individual jurisdictions may not achieve global objectives, and identify situations where locally applied interventions can lead to an overall increase in the numbers of cases and deaths.


Our approach underscores the importance of tailoring disease management plans to existing regulatory structures as part of an evidence-based decision framework. Most importantly, we demonstrate that there needs to be a greater consideration of more » the degree to which governance structure impacts disease outcomes.

« less
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
BMC Public Health
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    The leaves of carnivorous pitcher plants harbor diverse communities of inquiline species, including bacteria and larvae of the pitcher plant mosquito (Wyeomyia smithii), which aid the plant by processing captured prey. Despite the growing appreciation for this microecosystem as a tractable model in which to study food web dynamics and the moniker ofW. smithiias a ‘keystone predator’, very little is known about microbiota acquisition and assembly inW. smithiimosquitoes or the impacts ofW. smithii-microbiota interactions on mosquito and/or plant fitness.


    In this study, we used high throughput sequencing of bacterial 16S rRNA gene amplicons to characterize and compare microbiota diversity in field- and laboratory-derivedW. smithiilarvae. We then conducted controlled experiments in the laboratory to better understand the factors shaping microbiota acquisition and persistence across theW. smithiilife cycle. Methods were also developed to produce axenic (microbiota-free)W. smithiilarvae that can be selectively recolonized with one or more known bacterial species in order to study microbiota function. Our results support a dominant role for the pitcher environment in shaping microbiota diversity inW. smithiilarvae, while also indicating that pitcher-associated microbiota can persist in and be dispersed by adultW. smithiimosquitoes. We also demonstrate the successful generation of axenicW. smithiilarvae and report variable fitness outcomes inmore »gnotobiotic larvae monocolonized by individual bacterial isolates derived from naturally occurring pitchers in the field.


    This study provides the first information on microbiota acquisition and assembly inW. smithiimosquitoes. This study also provides the first evidence for successful microbiota manipulation in this species. Altogether, our results highlight the value of such methods for studying host-microbiota interactions and lay the foundation for future studies to understand howW. smithii-microbiota interactions shape the structure and stability of this important model ecosystem.

    « less
  2. Abstract Background

    The biophysics of an organism span multiple scales from subcellular to organismal and include processes characterized by spatial properties, such as the diffusion of molecules, cell migration, and flow of intravenous fluids. Mathematical biology seeks to explain biophysical processes in mathematical terms at, and across, all relevant spatial and temporal scales, through the generation of representative models. While non-spatial, ordinary differential equation (ODE) models are often used and readily calibrated to experimental data, they do not explicitly represent the spatial and stochastic features of a biological system, limiting their insights and applications. However, spatial models describing biological systems with spatial information are mathematically complex and computationally expensive, which limits the ability to calibrate and deploy them and highlights the need for simpler methods able to model the spatial features of biological systems.


    In this work, we develop a formal method for deriving cell-based, spatial, multicellular models from ODE models of population dynamics in biological systems, and vice versa. We provide examples of generating spatiotemporal, multicellular models from ODE models of viral infection and immune response. In these models, the determinants of agreement of spatial and non-spatial models are the degree of spatial heterogeneity in viral production and rates ofmore »extracellular viral diffusion and decay. We show how ODE model parameters can implicitly represent spatial parameters, and cell-based spatial models can generate uncertain predictions through sensitivity to stochastic cellular events, which is not a feature of ODE models. Using our method, we can test ODE models in a multicellular, spatial context and translate information to and from non-spatial and spatial models, which help to employ spatiotemporal multicellular models using calibrated ODE model parameters. We additionally investigate objects and processes implicitly represented by ODE model terms and parameters and improve the reproducibility of spatial, stochastic models.


    We developed and demonstrate a method for generating spatiotemporal, multicellular models from non-spatial population dynamics models of multicellular systems. We envision employing our method to generate new ODE model terms from spatiotemporal and multicellular models, recast popular ODE models on a cellular basis, and generate better models for critical applications where spatial and stochastic features affect outcomes.

    « less
  3. Abstract Background

    The topology of metabolic networks is both well-studied and remarkably well-conserved across many species. The regulation of these networks, however, is much more poorly characterized, though it is known to be divergent across organisms—two characteristics that make it difficult to model metabolic networks accurately. While many computational methods have been built to unravel transcriptional regulation, there have been few approaches developed for systems-scale analysis and study of metabolic regulation. Here, we present a stepwise machine learning framework that applies established algorithms to identify regulatory interactions in metabolic systems based on metabolic data: stepwise classification of unknown regulation, or SCOUR.


    We evaluated our framework on both noiseless and noisy data, using several models of varying sizes and topologies to show that our approach is generalizable. We found that, when testing on data under the most realistic conditions (low sampling frequency and high noise), SCOUR could identify reaction fluxes controlled only by the concentration of a single metabolite (its primary substrate) with high accuracy. The positive predictive value (PPV) for identifying reactions controlled by the concentration of two metabolites ranged from 32 to 88% for noiseless data, 9.2 to 49% for either low sampling frequency/low noise or high sampling frequency/high noisemore »data, and 6.6–27% for low sampling frequency/high noise data, with results typically sufficiently high for lab validation to be a practical endeavor. While the PPVs for reactions controlled by three metabolites were lower, they were still in most cases significantly better than random classification.


    SCOUR uses a novel approach to synthetically generate the training data needed to identify regulators of reaction fluxes in a given metabolic system, enabling metabolomics and fluxomics data to be leveraged for regulatory structure inference. By identifying and triaging the most likely candidate regulatory interactions, SCOUR can drastically reduce the amount of time needed to identify and experimentally validate metabolic regulatory interactions. As high-throughput experimental methods for testing these interactions are further developed, SCOUR will provide critical impact in the development of predictive metabolic models in new organisms and pathways.

    « less
  4. Abstract Motivation

    Advances in experimental and imaging techniques have allowed for unprecedented insights into the dynamical processes within individual cells. However, many facets of intracellular dynamics remain hidden, or can be measured only indirectly. This makes it challenging to reconstruct the regulatory networks that govern the biochemical processes underlying various cell functions. Current estimation techniques for inferring reaction rates frequently rely on marginalization over unobserved processes and states. Even in simple systems this approach can be computationally challenging, and can lead to large uncertainties and lack of robustness in parameter estimates. Therefore we will require alternative approaches to efficiently uncover the interactions in complex biochemical networks.


    We propose a Bayesian inference framework based on replacing uninteresting or unobserved reactions with time delays. Although the resulting models are non-Markovian, recent results on stochastic systems with random delays allow us to rigorously obtain expressions for the likelihoods of model parameters. In turn, this allows us to extend MCMC methods to efficiently estimate reaction rates, and delay distribution parameters, from single-cell assays. We illustrate the advantages, and potential pitfalls, of the approach using a birth–death model with both synthetic and experimental data, and show that we can robustly infer model parameters using a relativelymore »small number of measurements. We demonstrate how to do so even when only the relative molecule count within the cell is measured, as in the case of fluorescence microscopy.

    Availability and implementation

    Accompanying code in R is available at

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less
  5. Abstract

    Hepatitis C virus (HCV) is 15 times more prevalent among persons in Spain’s prisons than in the community. Recently, Spain initiated a pilot program, JAILFREE-C, to treat HCV in prisons using direct-acting antivirals (DAAs). Our aim was to identify a cost-effective strategy to scale-up HCV treatment in all prisons. Using a validated agent-based model, we simulated the HCV landscape in Spain’s prisons considering disease transmission, screening, treatment, and prison-community dynamics. Costs and disease outcomes under status quo were compared with strategies to scale-up treatment in prisons considering prioritization (HCV fibrosis stage vs. HCV prevalence of prisons), treatment capacity (2,000/year vs. unlimited) and treatment initiation based on sentence lengths (>6 months vs. any). Scaling-up treatment by treating all incarcerated persons irrespective of their sentence length provided maximum health benefits–preventing 10,200 new cases of HCV, and 8,300 HCV-related deaths between 2019–2050; 90% deaths prevented would have occurred in the community. Compared with status quo, this strategy increased quality-adjusted life year (QALYs) by 69,700 and costs by €670 million, yielding an incremental cost-effectiveness ratio of €9,600/QALY. Scaling-up HCV treatment with DAAs for the entire Spanish prison population, irrespective of sentence length, is cost-effective and would reduce HCV burden.