skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Climatic Control on Mean Annual Groundwater Evapotranspiration in a Three‐Stage Precipitation Partitioning Framework
Abstract

A three‐stage precipitation partitioning framework is proposed to study the climate controls on mean annual groundwater evapotranspiration (GWET) for 33 gauged watersheds in west‐central Florida. Daily GWET, total evapotranspiration (ET), groundwater recharge, base flow, and total runoff are simulated by the Integrated Hydrologic Model, which dynamically couples a surface water model (HSPF) and a groundwater flow model (MODFLOW). The roles of GWET on long‐term water balance are quantified by four ratios. The ratios of GWET to total available water, watershed wetting, ET, and recharge decrease exponentially with watershed aridity index (WAI), which is defined as the ratio of potential evapotranspiration to total available water. In the one‐stage precipitation partitioning framework, the contribution of GWET to the ratio between total ET and available water for ET (i.e., they‐axis of Budyko curve) decreases with WAI. In the two‐stage precipitation partitioning framework, the contribution of GWET to the ratio between total ET and watershed wetting (i.e., Horton index) decreases with WAI. The changes in GWET caused by intra‐monthly (IM) climate variability are the highest among the temporal scales of climate variability investigated to understand controls on GWET. The inter‐annual, intra‐annual, and IM climate variabilities lead to increase of GWET; but the sub‐daily climate variability results in decrease of GWET. For the third stage of partitioning, given the same ratio of potential GWET to available water for GWET, higher percentage of forest and wetland and lower percentage of impervious land contribute to higher ratio of GWET to available water for GWET.

 
more » « less
Award ID(s):
2124849
NSF-PAR ID:
10419873
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
59
Issue:
6
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Future extreme precipitation (EP, daily rainfall amount over certain thresholds) is projected to increase with global climate change; however, its effect on groundwater recharge has not been fully explored. This study specifically investigates the spatiotemporal dynamics of groundwater recharge and the effects of extreme precipitation (daily rainfall amount over the 95th percentile, which is tagged by ranking the percentiles in each season for a base period) on groundwater recharge from 1950 to 2010 over the Northern High Plains (NHP) Aquifer using the Soil Water Balance Model. The results show that groundwater recharge significantly (p < 0.05) increased in the eastern NHP from 1950 to 2010, where the highest annual average groundwater recharge occurs compared to the central and the western NHP. In the eastern NHP, 45.1% of the annual precipitation fell as EP, which contributed 56.8% of the annual total groundwater recharge. In the western NHP, 30.9% of the annual precipitation fell as extreme precipitation, which contributed 62.5% of the annual total groundwater recharge. In addition, recharge by extreme precipitation mainly occurred in late spring and early summer, before the maximum evapotranspiration rate, which usually occurs in mid‐summer until late fall. A dry site in the western NHP and a wet site in the eastern NHP were analysed to indicate how recharge responds to EP with different precipitation regimes. The maximum daily recharge at the dry site exceeded the wet site when there was EP. When precipitation fell as non‐extreme rainfall, most recharge was less than 5 mm at both the dry and wet sites, and the maximum recharge at the dry site became lower than the wet site. This study shows that extreme precipitation plays a significant role in determining groundwater recharge. © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.

     
    more » « less
  2. Abstract

    The temporal variability of precipitation and potential evapotranspiration affects streamflow from daily to long‐term scales, but the relative roles of different climate variabilities on streamflow at daily, monthly, annual, and mean annual scales have not been systematically investigated in the literature. This paper developed a new daily water balance model, which provides a unified framework for water balance across timescales. The daily water balance model is driven by four climate forcing scenarios (observed daily climate and observed daily climate with its intra‐monthly, intra‐annual, and inter‐annual variability removed) and applied to 78 catchments. Daily streamflow from the water balance model is aggregated to coarser timescales. The relative roles of intra‐monthly, intra‐annual, and inter‐annual climate variability are evaluated by comparing the modeled streamflow forced with the climate forcings at two consecutive timescales. It is found that daily, monthly, and annual streamflow is primarily controlled by the climate variability at the same timescale. Intra‐monthly climate variability plays a small role in monthly and annual streamflow variability. Intra‐annual climate variability has significant effects on streamflow at all the timescales, and the relative roles of inter‐annual climate variability are also significant to the monthly and mean annual streamflow, which is often disregarded. The quantitative evaluation of the roles of climate variability reveals how climate controls streamflow across timescales.

     
    more » « less
  3. Abstract

    Precipitation is the primary driver of hydrological models, and its spatial and temporal variability have a great impact on water partitioning. However, in data‐sparse regions, uncertainty in precipitation estimates is high and the sensitivity of water partitioning to this uncertainty is unknown. This is a particular challenge in drylands (semi‐arid and arid regions) where the water balance is highly sensitive to rainfall, yet there is commonly a lack of in situ rain gauge data. To understand the impact of precipitation uncertainty on the water balance in drylands, here we have performed simulations with a process‐based hydrological model developed to characterize the water balance in arid and semi‐arid regions (DRYP: DRYland water Partitioning model). We performed a series of numerical analyses in the Upper Ewaso Ng'iro basin, Kenya driven by three gridded precipitation datasets with different spatio‐temporal resolutions (IMERG, MSWEP, and ERA5), evaluating simulations against streamflow observations and remotely sensed data products of soil moisture, actual evapotranspiration, and total water storage. We found that despite the great differences in the spatial distribution of rainfall across a climatic gradient within the basin, DRYP shows good performance for representing streamflow (KGE >0.6), soil moisture, actual evapotranspiration, and total water storage (r >0.5). However, the choice of precipitation datasets greatly influences surface (infiltration, runoff, and transmission losses) and subsurface fluxes (groundwater recharge and discharge) across different climatic zones of the Ewaso Ng'iro basin. Within humid areas, evapotranspiration does not show sensitivity to the choice of precipitation dataset, however, in dry lowland areas it becomes more sensitive to precipitation rates as water‐limited conditions develop. The analysis shows that the highest rates of precipitation produce high rates of diffuse recharge in Ewaso uplands and also propagate into runoff, transmission losses and, ultimately focused recharge, with the latter acting as the main mechanism of groundwater recharge in low dry areas. The results from this modelling exercise suggest that care must be taken in selecting forcing precipitation data to drive hydrological modelling efforts, especially in basins that span a climatic gradient. These results also suggest that more effort is required to reduce uncertainty between different precipitation datasets, which will in turn result in more consistent quantification of the water balance.

     
    more » « less
  4. Abstract

    Accelerating mountain glacier recession in a warming climate threatens the sustainability of mountain water resources. The extent to which groundwater will provide resilience to these water resources is unknown, in part due to a lack of data and poorly understood interactions between groundwater and surface water. Here we address this knowledge gap by linking climate, glaciers, surface water, and groundwater into an integrated model of the Shullcas Watershed, Peru, in the tropical Andes, the region experiencing the most rapid mountain‐glacier retreat on Earth. For a range of climate scenarios, our model projects that glaciers will disappear by 2100. The loss of glacial meltwater will be buffered by relatively consistent groundwater discharge, which only receives minor recharge (~2%) from glacier melt. However, increasing temperature and associated evapotranspiration, alongside potential decreases in precipitation, will decrease groundwater recharge and streamflow, particularly for the RCP 8.5 emission scenario.

     
    more » « less
  5. Abstract. Mountainous regions act as the water towers of the worldby producing streamflow and groundwater recharge, a function that isparticularly important in semiarid regions. Quantifying rates of mountainsystem recharge is difficult, and hydrologic models offer a method toestimate recharge over large scales. These recharge estimates are prone touncertainty from various sources including model structure and parameters.The quality of meteorological forcing datasets, particularly in mountainousregions, is a large source of uncertainty that is often neglected ingroundwater investigations. In this contribution, we quantify the impact ofuncertainty in both precipitation and air temperature forcing datasets onthe simulated groundwater recharge in the mountainous watershed of theKaweah River in California, USA. We make use of the integrated surface water–groundwater model, ParFlow.CLM, and several gridded datasets commonly usedin hydrologic studies, downscaled NLDAS-2, PRISM, Daymet, Gridmet, andTopoWx. Simulations indicate that, across all forcing datasets, mountain front recharge is an important component of the water budget in themountainous watershed, accounting for 9 %–72 % of the annual precipitation and ∼90 % of the total mountain system recharge to theadjacent Central Valley aquifer. The uncertainty in gridded air temperatureor precipitation datasets, when assessed individually, results in similarranges of uncertainty in the simulated water budget. Variations in simulatedrecharge to changes in precipitation (elasticities) and air temperature(sensitivities) are larger than 1 % change in recharge per 1 % change inprecipitation or 1 ∘C change in temperature. The total volume ofsnowmelt is the primary factor creating the high water budget sensitivity, and snowmelt volume is influenced by both precipitation and air temperatureforcings. The combined effect of uncertainty in air temperature andprecipitation on recharge is additive and results in uncertainty levels roughly equal to the sum of the individual uncertainties depending on thehydroclimatic condition of the watershed. Mountain system recharge pathwaysincluding mountain block recharge, mountain aquifer recharge, and mountainfront recharge are less sensitive to changes in air temperature than changesin precipitation. Mountain front and mountain block recharge are moresensitive to changes in precipitation than other recharge pathways. Themagnitude of uncertainty in the simulated water budget reflects theimportance of developing high-quality meteorological forcing datasets in mountainous regions. 
    more » « less