skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Three‐Stage Partitioning Framework for Modeling Mean Annual Groundwater Evapotranspiration
Abstract An analytical model is developed for mean annual groundwater evapotranspiration (GWET) at the watershed scale based on a three‐stage precipitation partitioning framework. The ratio of mean annual GWET to precipitation, defined as GWET ratio, is modeled as a function of climate aridity index (CAI), storage capacity index, the shape parameter ‘a’ for the spatial distribution of storage capacity, and the shape parameter ‘b’ for the spatial distribution of available water for GWET. In humid regions, GWET ratio tends to increase with increasing CAI due to the limited energy supply and shallower depth to water table (DWT) for a given storage capacity index. In contrast, in arid regions, the GWET ratio tends to decrease as the CAI increases because of the limited water availability and the presence of a deeper DWT for a given storage capacity index. In arid regions, the GWET ratio decreases as the parameter ‘a’ increases, mainly because of increased ET from a thicker unsaturated zone in environments with a deeper DWT. GWET ratio increases as parameter ‘b’ increases due to more watershed area with larger available water for GWET. The storage capacity index and shape parameters are estimated for 31 study watersheds in Tampa Bay Florida area based on the simulated GWET from an integrated hydrologic model and for 21 watersheds from literature. A possible correlation has been identified between the two shape parameters in the Tampa Bay watersheds. The analytical model for mean annual GWET can be further tested in other watersheds if data are available.  more » « less
Award ID(s):
2124849
PAR ID:
10556383
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
60
Issue:
11
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For evaluating the climatic and landscape controls on long‐term baseflow, baseflow index (BFI, defined as the ratio of baseflow to streamflow) and baseflow coefficient (BFC, defined as the ratio of baseflow to precipitation) are formulated as functions of climate aridity index, storage capacity index (defined as the ratio of average soil water storage capacity to precipitation), and a shape parameter for the spatial variability of storage capacity. The derivation is based on the two‐stage partitioning framework and a cumulative distribution function for storage capacity. Storage capacity has a larger impact on BFI than on BFC. When storage capacity index is smaller than 1, BFI is less sensitive to storage capacity index in arid regions compared to that in humid regions; whereas, when storage capacity index is larger than 1, BFI is less sensitive to storage capacity index in humid regions. The impact of storage capacity index on BFC is only significant in humid regions. The shape parameter plays an important role on fast flow generation at the first‐stage partitioning in humid regions and baseflow generation at the second‐stage partitioning in arid regions. The derived formulae were applied to more than 400 catchments where storage capacity index was found to follow a logarithmic function with climate aridity index. The role of climate forcings at finer timescales on baseflow were quantified, indicating that seasonality in climate forcings has a significant control especially on BFI. 
    more » « less
  2. Abstract. Prediction of mean annual runoff is of great interest but still poses achallenge in ungauged basins. The present work diagnoses the prediction inmean annual runoff affected by the uncertainty in estimated distribution ofsoil water storage capacity. Based on a distribution function, a waterbalance model for estimating mean annual runoff is developed, in which theeffects of climate variability and the distribution of soil water storagecapacity are explicitly represented. As such, the two parameters in themodel have explicit physical meanings, and relationships between theparameters and controlling factors on mean annual runoff are established.The estimated parameters from the existing data of watershed characteristicsare applied to 35 watersheds. The results showed that the model couldcapture 88.2 % of the actual mean annual runoff on average across thestudy watersheds, indicating that the proposed new water balance model ispromising for estimating mean annual runoff in ungauged watersheds. Theunderestimation of mean annual runoff is mainly caused by theunderestimation of the area percentage of low soil water storage capacitydue to neglecting the effect of land surface and bedrock topography. Higherspatial variability of soil water storage capacity estimated through theheight above the nearest drainage (HAND) and topographic wetness index (TWI)indicated that topography plays a crucial role in determining the actualsoil water storage capacity. The performance of mean annual runoffprediction in ungauged basins can be improved by employing better estimationof soil water storage capacity including the effects of soil, topography,and bedrock. It leads to better diagnosis of the data requirement forpredicting mean annual runoff in ungauged basins based on a newly developedprocess-based model finally. 
    more » « less
  3. Abstract A three‐stage precipitation partitioning framework is proposed to study the climate controls on mean annual groundwater evapotranspiration (GWET) for 33 gauged watersheds in west‐central Florida. Daily GWET, total evapotranspiration (ET), groundwater recharge, base flow, and total runoff are simulated by the Integrated Hydrologic Model, which dynamically couples a surface water model (HSPF) and a groundwater flow model (MODFLOW). The roles of GWET on long‐term water balance are quantified by four ratios. The ratios of GWET to total available water, watershed wetting, ET, and recharge decrease exponentially with watershed aridity index (WAI), which is defined as the ratio of potential evapotranspiration to total available water. In the one‐stage precipitation partitioning framework, the contribution of GWET to the ratio between total ET and available water for ET (i.e., they‐axis of Budyko curve) decreases with WAI. In the two‐stage precipitation partitioning framework, the contribution of GWET to the ratio between total ET and watershed wetting (i.e., Horton index) decreases with WAI. The changes in GWET caused by intra‐monthly (IM) climate variability are the highest among the temporal scales of climate variability investigated to understand controls on GWET. The inter‐annual, intra‐annual, and IM climate variabilities lead to increase of GWET; but the sub‐daily climate variability results in decrease of GWET. For the third stage of partitioning, given the same ratio of potential GWET to available water for GWET, higher percentage of forest and wetland and lower percentage of impervious land contribute to higher ratio of GWET to available water for GWET. 
    more » « less
  4. Understanding the process of precipitation partitioning into evapotranspiration and streamflow is fundamental for water resource planning. The Budyko framework has been widely used to evaluate the factors influencing this process. Still, its application has primarily focused on studying watersheds with minimal human influence and on a relatively small number of factors. Furthermore, there are discrepancies in the literature regarding the effects of climatic factors and land use changes on this process. To address these gaps, this study aims to quantify the influence of climate and anthropogenic activities on streamflow generation in the contiguous United States. To accomplish this, we calibrated an analytical form of the Budyko curve from 1990 to 2020 for 383 watersheds. We developed regional models of , a free parameter introduced to account for controls of precipitation partitioning not captured in the original Budyko equation, within different climate zones. We computed 49 climatic and landscape factors that were related to using correlation analysis and stepwise multiple linear regression. The findings of this study show that human activities explained a low variance of the spatial heterogeneity of compared with the watershed slope and the synchronization between precipitation and potential evapotranspiration, nevertheless, urban development emerged as a factor in temperate climates, whereas irrigated agriculture emerged in cold climates. In arid climates, mean annual precipitation explains less than 20% of the spatial variability in mean annual streamflow; furthermore, this climate is the most responsive to changes in . These results provide valuable insights into how land use and climate interact to impact streamflow generation differently in the contiguous United States contingent on the regional climate, explaining discrepancies in the literature. 
    more » « less
  5. Abstract Water temperatures in mountain streams are likely to rise under future climate change, with negative impacts on ecosystems and water quality. However, it is difficult to predict which streams are most vulnerable due to sparse historical records of mountain stream temperatures as well as complex interactions between snowpack, groundwater, streamflow and water temperature. Minimum flow volumes are a potentially useful proxy for stream temperature, since daily streamflow records are much more common. We confirmed that there is a strong inverse relationship between annual low flows and peak water temperature using observed data from unimpaired streams throughout the montane regions of the United States' west coast. We then used linear models to explore the relationships between snowpack, potential evapotranspiration and other climate‐related variables with annual low flow volumes and peak water temperatures. We also incorporated previous years' flow volumes into these models to account for groundwater carryover from year to year. We found that annual peak snowpack water storage is a strong predictor of summer low flows in the more arid watersheds studied. This relationship is mediated by atmospheric water demand and carryover subsurface water storage from previous years, such that multi‐year droughts with high evapotranspiration lead to especially low flow volumes. We conclude that watershed management to help retain snow and increase baseflows may help counteract some of the streamflow temperature rises expected from a warming climate, especially in arid watersheds. 
    more » « less