skip to main content


Title: Regional species gains outpace losses across North American continental shelf regions
Abstract Aim

Although species richness globally is likely to be declining, patterns in diversity at the regional scale depend on species gains within new habitats and species losses from previously inhabited areas. Our understanding of the processes associated with gains or losses remains poor, including whether these events exhibit immediate or delayed responses to environmental change.

Location

The study focuses on nine temperate marine ecosystems in North America.

Time period

The study period varies by region, but overall encompasses observations from 1970 to 2014.

Major taxa studied

We identified regional gains and losses for 577 marine fish and invertebrate species.

Methods

From a total of 166,213 sampling events from bottom trawls across North America that informed 17,997 independent observations of species gains and losses, we built generalized linear mixed effects models to test whether lagged temperature can explain instances of gains and losses of marine fishes and invertebrates in North American continental shelf habitats.

Results

We found that gains were less likely in years with high seasonality, consistent with seasonal extremes as a strong constraint on species occurrence. Losses were also negatively associated with high seasonality, but the response was delayed by 3 years.

Main conclusions

Environmental conditions play a role in species occupancy across diverse temperate marine ecosystems. Immediate gains paired with delayed losses can drive transient increases in species richness during times of environmental change. Identifying the dynamics behind regional species gains and losses is an important step towards prediction of biodiversity changes across ecosystems.

 
more » « less
Award ID(s):
1616821 1426891
NSF-PAR ID:
10419887
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
32
Issue:
7
ISSN:
1466-822X
Page Range / eLocation ID:
p. 1205-1217
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Alpine ecosystems differ in area, macroenvironment and biogeographical history across the Earth, but the relationship between these factors and plant species richness is still unexplored. Here, we assess the global patterns of plant species richness in alpine ecosystems and their association with environmental, geographical and historical factors at regional and community scales.

    Location

    Global.

    Time period

    Data collected between 1923 and 2019.

    Major taxa studied

    Vascular plants.

    Methods

    We used a dataset representative of global alpine vegetation, consisting of 8,928 plots sampled within 26 ecoregions and six biogeographical realms, to estimate regional richness using sample‐based rarefaction and extrapolation. Then, we evaluated latitudinal patterns of regional and community richness with generalized additive models. Using environmental, geographical and historical predictors from global raster layers, we modelled regional and community richness in a mixed‐effect modelling framework.

    Results

    The latitudinal pattern of regional richness peaked around the equator and at mid‐latitudes, in response to current and past alpine area, isolation and the variation in soil pH among regions. At the community level, species richness peaked at mid‐latitudes of the Northern Hemisphere, despite a considerable within‐region variation. Community richness was related to macroclimate and historical predictors, with strong effects of other spatially structured factors.

    Main conclusions

    In contrast to the well‐known latitudinal diversity gradient, the alpine plant species richness of some temperate regions in Eurasia was comparable to that of hyperdiverse tropical ecosystems, such as the páramo. The species richness of these putative hotspot regions is explained mainly by the extent of alpine area and their glacial history, whereas community richness depends on local environmental factors. Our results highlight hotspots of species richness at mid‐latitudes, indicating that the diversity of alpine plants is linked to regional idiosyncrasies and to the historical prevalence of alpine ecosystems, rather than current macroclimatic gradients.

     
    more » « less
  2. Abstract Aim

    As one of the most diverse and economically important families on Earth, ground beetles (Carabidae) are viewed as a key barometer of climate change. Recent meta‐analyses provide equivocal evidence on abundance changes of terrestrial insects. Generalizations from traits (e.g., body size, diets, flights) provide insights into understanding community responses, but syntheses for the diverse Carabidae have not yet emerged. We aim to determine how habitat and trait syndromes mediate risks from contemporary and future climate change on the Carabidae community.

    Location

    North America.

    Time period

    2012–2100.

    Major taxa studied

    Ground beetles (Carabidae).

    Methods

    We synthesized the abundance and trait data for 136 species from the National Ecological Observatory Network (NEON) and additional raw data from studies across North America with remotely sensed habitat characteristics in a generalized joint attribute model. Combined Light Detection and RAnging (LiDAR) and hyperspectral imagery were used to derive habitat at a continental scale. We evaluated climate risks on the joint response of species and traits by expanding climate velocity to response velocity given habitat change.

    Results

    Habitat contributes more variations in species abundance and community‐weighted mean traits compared to climate. Across North America, grassland fliers benefit from open habitats in hot, dry climates. By contrast, large‐bodied, burrowing omnivores prefer warm‐wet climates beneath closed canopies. Species‐specific abundance changes predicted by the fitted model under future shared socioeconomic pathways (SSP) scenarios are controlled by climate interactions with habitat heterogeneity. For example, the mid‐size, non‐flier is projected to decline across much of the continent, but the magnitudes of declines are reduced or even reversed where canopies are open. Conversely, temperature dominates the response of the small, frequent flierAgonoleptus conjunctus, causing projected change to be more closely linked to regional temperature changes.

    Main conclusions

    Carabidae community reorganization under climate change is being governed by climate–habitat interactions (CHI). Species‐specific responses to CHI are explained by trait syndromes. The fact that habitat mediates warming impacts has immediate application to critical habitat designation for carabid conservation.

     
    more » « less
  3. Abstract Aim

    We investigate geographic patterns across taxonomic, ecological and phylogenetic diversity to test for spatial (in)congruency and identify aggregate diversity hotspots in relationship to present land use and future climate. Simulating extinctions of imperilled species, we demonstrate where losses across diversity dimensions and geography are predicted.

    Location

    North America.

    Time period

    Present day, future.

    Major taxa studied

    Rodentia.

    Methods

    Using geographic range maps for rodent species, we quantified spatial patterns for 11 dimensions of diversity: taxonomic (species, range weighted), ecological (body size, diet and habitat), phylogenetic (mean, variance, and nearest‐neighbour patristic distances, phylogenetic distance and genus‐to‐species ratio) and phyloendemism. We tested for correlations across dimensions and used spatial residual analyses to illustrate regions of pronounced diversity. We aggregated diversity hotspots in relationship to predictions of land‐use and climate change and recalculated metrics following extinctions of IUCN‐listed imperilled species.

    Results

    Topographically complex western North America hosts high diversity across multiple dimensions: phyloendemism and ecological diversity exceed predictions based on taxonomic richness, and phylogenetic variance patterns indicate steep gradients in phylogenetic turnover. An aggregate diversity hotspot emerges in the west, whereas spatial incongruence exists across diversity dimensions at the continental scale. Notably, phylogenetic metrics are uncorrelated with ecological diversity. Diversity hotspots overlap with land‐use and climate change, and extinctions predicted by IUCN status are unevenly distributed across space, phylogeny or ecological groups.

    Main conclusions

    Comparison of taxonomic, ecological and phylogenetic diversity patterns for North American rodents clearly shows the multifaceted nature of biodiversity. Testing for geographic patterns and (in)congruency across dimensions of diversity facilitates investigation into underlying ecological and evolutionary processes. The geographic scope of this analysis suggests that several explicit regional challenges face North American rodent fauna in the future. Simultaneous consideration of multi‐dimensional biodiversity allows us to assess what critical functions or evolutionary history we might lose with future extinctions and maximize the potential of our conservation efforts.

     
    more » « less
  4. Abstract Aim

    While the floras of eastern Asia (EA) and eastern North America (ENA) share numerous genera, they have drastically different species richness. Despite an overall similarity in the quality of their temperate climates, the climate of EA is more spatially heterogeneous than that of ENA. Spatial environmental heterogeneity has been found to play a key role in influencing species richness in some regions. Here, we tested the following hypotheses: (a) EA species will occupy larger climatic niches than their ENA congeners, (b) congeners of EA‐ENA disjunct genera will occupy statistically equivalent climatic niches, and (c) congeners of EA‐ENA disjunct genera will occupy more similar climatic niches than expected by their respective physiographic context.

    Location

    North America and Asia.

    Time period

    Present.

    Major taxa studied

    Seed plants.

    Methods

    Predictions generated by ecological niche models (ENMs) were compared for 88 species across 31 EA‐ENA disjunct genera. ENM predictions were assessed for geographic and ecological breadth. Tests for niche equivalency and similarity were performed for congeneric species pairs to determine if species of disjunct genera have experienced niche conservatism or divergence.

    Results

    EA species tend to occupy greater amounts of climatic niche space than their close relatives in ENA. Over two‐thirds of the conducted niche comparisons show that EA‐ENA congeners either occupy equivalent climatic niche space within these broader climatic regimes or occupy non‐equivalent niches that are as similar as expected given their physiographic contexts.

    Main conclusions

    EA species tend to occupy larger climatic niches, and congeners of EA‐ENA disjunct genera tend to occupy equivalent/similar niche space within their respective distributions, with differences in occupied niches possibly due to their respective physiographic contexts, highlighting how niche‐neutral processes and niche conservatism may affect the distributions of disjunct species.

     
    more » « less
  5. Abstract Aim

    Polyploids have been theorized to occur more frequently in environments that are subjected to severe conditions or sudden disruptions. Here we test the expectation that polyploid taxa occur more frequently in extreme or disrupted environments than their diploid counterparts, whether due to increased adaptive potential, environmental resilience or cross‐ploidy competition.

    Location

    South America.

    Taxon

    All frog genera in the area with both polyploid and diploid member species (Ceratophrys, Chiasmocleis, Odontophrynus, PhyllomedusaandPleurodema).

    Methods

    In all, 13,556 occurrence records of 82 frog species were collected from the Global Biodiversity Information Facility. Species distribution models, range overlap estimates, statistical tests and principal component analyses were used to estimate and compare environments between diploid and polyploid species within and across genera using several categorical and quantitative variables taken from multiple publicly available sources.

    Results

    Almost all polyploid occurrences are found within southeastern South America, largely to the exclusion of diploids. Polyploid species occur more closely with intergeneric polyploids than they do with congeneric diploids. Southeastern South America is more temperate, seasonal and less forested when compared to the tropical environments more commonly inhabited by diploids. The habitat ranges of polyploid species are subject to greater temperature fluctuations than diploid species. This region has also experienced major transformations in the modern era, owing to an agriculture boom over the last century. Polyploid occurrences are more likely to be found in areas with greater cropland usage, fertilizer application and pesticide application than diploids.

    Main Conclusions

    Across species, temperature seasonality was the only variable with strong statistical differences between diploids and polyploids. Greater annual fluctuations in temperature may lead to more established polyploid species due to reasons mentioned above; however, extreme temperature differences are also known to contribute to polyploid gamete formation, providing a possible non‐selective explanation. Polyploid occurrences are also more likely to be found in areas of high agricultural impact, providing support for the hypothesis that polyploids are more resilient to environmental disruptions than diploids.

     
    more » « less