Animals originated in the Neoproterozoic and ‘exploded’ into the fossil record in the Cambrian. The Cambrian also represents a high point in the animal fossil record for the preservation of soft tissues that are normally degraded. Specifically, fossils from Burgess Shale-type (BST) preservational windows give paleontologists an unparalleled view into early animal evolution. Why this time interval hosts such exceptional preservation, and why this preservational window declines in the early Paleozoic, have been long-standing questions. Anoxic conditions have been hypothesized to play a role in BST preservation, but recent geochemical investigations of these deposits have reached contradictory results with respect to the redox state of overlying bottom waters. Here, we report a multi-proxy geochemical study of the Lower Cambrian Mural Formation, Alberta, Canada. At the type section, the Mural Formation preserves rare recalcitrant organic tissues in shales that were deposited near storm wave base (a Tier 3 deposit; the worst level of soft-tissue preservation). The geochemical signature of this section shows little to no evidence of anoxic conditions, in contrast with published multi-proxy studies of more celebrated Tier 1 and 2 deposits. These data help confirm that ‘decay-limited’ BST biotas were deposited in more oxygenated conditions, and support a role for anoxic conditions in BST preservation. Finally, we discuss the role of iron reduction in BST preservation, including the formation of iron-rich clays and inducement of sealing seafloor carbonate cements. As oceans and sediment columns became more oxygenated and more sulfidic through the early Paleozoic, these geochemical changes may have helped close the BST taphonomic window.
more »
« less
The role of iron in the formation of Ediacaran ‘death masks’
Abstract The Ediacara biota are an enigmatic group of Neoproterozoic soft‐bodied fossils that mark the first major radiation of complex eukaryotic and macroscopic life. These fossils are thought to have been preserved via pyritic “death masks” mediated by seafloor microbial mats, though little about the chemical constraints of this preservational pathway is known, in particular surrounding the role of bioavailable iron in death mask formation and preservational fidelity. In this study, we perform decay experiments on both diploblastic and triploblastic animals under a range of simulated sedimentary iron concentrations, in order to characterize the role of iron in the preservation of Ediacaran organisms. After 28 days of decay, we demonstrate the first convincing “death masks” produced under experimental laboratory conditions composed of iron sulfide and probable oxide veneers. Moreover, our results demonstrate that the abundance of iron in experiments is not the sole control on death mask formation, but also tissue histology and the availability of nucleation sites. This illustrates that Ediacaran preservation via microbial death masks need not be a “perfect storm” of paleoenvironmental porewater and sediment chemistry, but instead can occur under a range of conditions.
more »
« less
- Award ID(s):
- 1652351
- PAR ID:
- 10419893
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Geobiology
- Volume:
- 21
- Issue:
- 4
- ISSN:
- 1472-4677
- Page Range / eLocation ID:
- p. 421-434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The upper Ediacaran stratigraphic record hosts fossil assemblages of Earth’s earliest communities of complex, macroscopic, multicellular life. Tubular fossils are a common and diverse, though frequently undercharacterized, component of many of these assemblages. Gaojiashania cyclus is an enigmatic tubular fossil and candidate index fossil found in upper Ediacaran strata globally and is best known from the Gaojiashan Lagerstätte of South China. Here we describe a recently discovered assemblage of Gaojiashania fossils from the Ediacaran Dunfee Member of the Deep Spring Formation of Nevada, USA. Both body and trace fossil affinities have been proposed for Gaojiashania; we present morphological and biostratinomic evidence for a body fossil affinity for the Dunfee specimens. Additionally, previous studies have highlighted that Ediacaran tubular fossils are characterized by a wide range of preservational modes, including association with pyrite, apatite, or clay minerals and preservation as carbonaceous compressions. Petrographic, SEM, and EDS data indicate that the Dunfee Gaojiashania specimens are preserved as ‘Ediacara-style’ external, internal and composite molds, in siltstone and sandstone with a clay mineral-rich matrix of both aluminosilicates and non-aluminous Mg- and Fe-rich silicate minerals that we interpret as authigenic clays. Authigenic clay-mediated fossilization of unmineralized tissues, including moldic preservation in heterolithic siliciclastic strata, as indicated by the Dunfee Gaojiashania, may be linked to the prevalence of both silica-rich and ferruginous seawater conditions prior to both the radiation of silica-biomineralizing organisms and the rise of ocean and atmospheric oxygen to modern levels. In this light, clay authigenesis may have played a critical role in facilitating multiple modes of Ediacaran and Cambrian exceptional fossilization, thus shaping the stratigraphic distribution of a range of Ediacara macrofossil taxa.more » « less
-
Abstract We describe > 200 ribbon-like macroscopic fossils from terminal Ediacaran strata at Mount Dunfee, Nevada, USA ∼ 115 m below the local placement of the Ediacaran–Cambrian boundary. They are preserved as casts and molds, composed of Fe-oxides and Fe-rich aluminosilicates in an aluminosilicate clay matrix. Measurements of 50 of the specimens provide a fossil size range of 0.22–0.74 mm-wide and 0.1–75.0 mm-long. Some specimens evidence original flexibility and appear to be fragmented, consistent with soft body preservation. They are therefore interpreted as body fossils, rather than trace fossils. Given this interpretation, we suggest that the fossils’ size range and ribbon-like morphologies are consistent with them being members of the problematicum Vendotaenia, which have not been previously reported from Ediacaran strata within the southern Great Basin. The phylogenetic affinity of vendotaenids is unresolved, but they are commonly interpreted as a form of eukaryotic macroalgae. This report firmly establishes vendotaenids in Ediacaran strata on Laurentia, broadening their known paleogeographic range during the end-Ediacaran Period. Additionally, the morphology of the fossils described here supports the notion that, although vendotaenids are reported from many Ediacaran paleocontinents globally, there was low macroalgal diversity at the end of the Ediacaran Period.more » « less
-
The Nama Group of Namibia and South Africa preserves an extraordinary record of marine ecosystems existing in the lastc. 15 myr of the Ediacaran, comprising enigmatic and soft-bodied fossils that are part of the first major radiation of macroscopic life. Since their description at the beginning of the 20th century these fossils have played an important role in debates surrounding the affinities of iconic Ediacaran fossil groups, and ash beds preserved throughout the succession have been crucial to understanding rates and patterns of early animal evolution. Fossils preserved in varying contexts have allowed for detailed reconstructions of Ediacaran palaeobiology, and geochemical analyses provide a window into understanding the controls on Ediacaran taphonomic pathways, including crucial, and potentially widespread, roles played by clay minerals in exceptional fossil preservation.more » « less
-
The Ediacaran−Cambrian boundary strata in the Great Basin of the southwestern United States record biological, geochemical, and tectonic change during the transformative interval of Earth history in which metazoans diversified. Here, we integrate new and compiled chemostratigraphic, paleontological, sedimentological, and stratigraphic data sets from the Death Valley region, the White-Inyo Ranges, and Esmeralda County in Nevada and California and evaluate these data within a regional geologic framework. A large negative carbon isotope (δ13C) excursion—also known as the Basal Cambrian Excursion, or BACE—is regionally reproducible, despite lateral changes in sedimentary facies and dolomitization across ∼250 km, consistent with a primary marine origin for this perturbation. Across the southern Great Basin, Ediacaran body fossils are preserved in a variety of taphonomic modes, including cast and mold preservation, two-dimensional compressional preservation, two-dimensional and three-dimensional pyritization, and calcification. The stratigraphic framework of these occurrences is used to consider the relationships among taphonomic modes for fossil preservation and paleoenvironmental settings within this basin. In this region, Ediacaran-type fossils occur below the nadir of the BACE, while Cambrian-type trace fossils occur above. Sedimentological features that include giant ooids, stromatolites, and textured organic surfaces are widespread and abundant within the interval that records biotic turnover and coincide with basaltic volcanism and the BACE. We hypothesize that the prevalence of these sedimentological features, the BACE, and the disappearance of some Ediacaran clades were caused by environmental perturbation at the Ediacaran-Cambrian boundary.more » « less
An official website of the United States government
