skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Inter-annual facilitation via pollinator support arises with species-specific germination rates in a model of plant–pollinator communities
Facilitation is likely important for understanding community diversity dynamics, but its myriad potential mechanisms are under-investigated. Studies of pollinator-mediated facilitation in plants, for example, are typically focused on how co-flowering species facilitate each other's pollination within a season. However, pollinator-mediated facilitation could also arise in the form of inter-annual pollination support, where co-occurring plant populations mutually facilitate each other by providing dynamic stability to support a pollinator population through time. In this work, I test this hypothesis with simulation models of annual flowering plant and bee pollinator populations to determine if and how inter-annual pollination support affects the persistence and/or stability of simulated communities. Two-species plant communities persisted at higher rates than single-species communities, and facilitation was strongest in communities with low mean germination rates and highly species-specific responses to environmental variation. Single-species communities were often more stable than their counterparts, likely because of survivorship—persistent single-species communities were necessarily more stable through time to support pollinators. This work shows that competition and facilitation can simultaneously affect plant population dynamics. It also importantly identifies key features of annual plant communities that might exhibit inter-annual pollination support- those with low germination rates and species-specific responses to variation.  more » « less
Award ID(s):
1754299
PAR ID:
10419992
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
290
Issue:
1990
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Boege, Karina (Ed.)
    Abstract Pollinator-mediated competition and facilitation are two important mechanisms mediating co-flowering community assembly. Experimental studies, however, have mostly focused on evaluating outcomes for a single interacting partner at a single location. Studies that evaluate spatial variation in the bidirectional effects between co-flowering species are necessary if we aim to advance our understanding of the processes that mediate species coexistence in diverse co-flowering communities. Here, we examine geographic variation (i.e. at landscape level) in bidirectional pollinator-mediated effects between co-flowering Mimulus guttatus and Delphinium uliginosum. We evaluated effects on pollen transfer dynamics (conspecific and heterospecific pollen deposition) and plant reproductive success. We found evidence of asymmetrical effects (one species is disrupted and the other one is facilitated) but the effects were highly dependent on geographical location. Furthermore, effects on pollen transfer dynamics did not always translate to effects on overall plant reproductive success (i.e. pollen tube growth) highlighting the importance of evaluating effects at multiple stages of the pollination process. Overall, our results provide evidence of a spatial mosaic of pollinator-mediated interactions between co-flowering species and suggest that community assembly processes could result from competition and facilitation acting simultaneously. Our study highlights the importance of experimental studies that evaluate the prevalence of competitive and facilitative interactions in the field, and that expand across a wide geographical context, in order to more fully understand the mechanisms that shape plant communities in nature. 
    more » « less
  2. Abstract Understanding how anthropogenic disturbances affect plant–pollinator systems has important implications for the conservation of biodiversity and ecosystem functioning. Previous laboratory studies show that pesticides and pathogens, which have been implicated in the rapid global decline of pollinators over recent years, can impair behavioral processes needed for pollinators to adaptively exploit floral resources and effectively transfer pollen among plants. However, the potential for these sublethal stressor effects on pollinator–plant interactions at the individual level to scale up into changes to the dynamics of wild plant and pollinator populations at the system level remains unclear. We developed an empirically parameterized agent‐based model of a bumblebee pollination system called SimBee to test for effects of stressor‐induced decreases in the memory capacity and information processing speed of individual foragers on bee abundance (scenario 1), plant diversity (scenario 2), and bee–plant system stability (scenario 3) over 20 virtual seasons. Modeling of a simple pollination network of a bumblebee and four co‐flowering bee‐pollinated plant species indicated that bee decline and plant species extinction events could occur when only 25% of the forager population showed cognitive impairment. Higher percentages of impairment caused 50% bee loss in just five virtual seasons and system‐wide extinction events in less than 20 virtual seasons under some conditions. Plant species extinctions occurred regardless of bee population size, indicating that stressor‐induced changes to pollinator behavior alone could drive species loss from plant communities. These findings indicate that sublethal stressor effects on pollinator behavioral mechanisms, although seemingly insignificant at the level of individuals, have the cumulative potential in principle to degrade plant–pollinator species interactions at the system level. Our work highlights the importance of an agent‐based modeling approach for the identification and mitigation of anthropogenic impacts on plant–pollinator systems. 
    more » « less
  3. Summary The disruption of mutualisms by invasive species has consequences for biodiversity loss and ecosystem function. Although invasive plant effects on the pollination of individual native species has been the subject of much study, their impacts on entire plant–pollinator communities are less understood. Community‐level studies on plant invasion have mainly focused on two fronts: understanding the mechanisms that mediate their integration; and their effects on plant–pollinator network structure. Here we briefly review current knowledge and propose a more unified framework for evaluating invasive species integration and their effects on plant–pollinator communities. We further outline gaps in our understanding and propose ways to advance knowledge in this field. Specifically, modeling approaches have so far yielded important predictions regarding the outcome and drivers of invasive species effects on plant communities. However, experimental studies that test these predictions in the field are lacking. We further emphasize the need to understand the link between invasive plant effects on pollination network structure and their consequences for native plant population dynamics (population growth). Integrating demographic studies with those on pollination networks is thus key in order to achieve a more predictive understanding of pollinator‐mediated effects of invasive species on the persistence of native plant biodiversity. 
    more » « less
  4. Abstract A critical goal for ecologists is understanding how ongoing local and global species losses will affect ecosystem functions and services. Diversity–functioning relationships, which are well‐characterized in primary producer communities, are much less consistently predictable for ecosystem functions involving two or more trophic levels, particularly in situations where multiple species in one trophic level impact functional outcomes at another trophic level. This is particularly relevant to pollination functioning, given ongoing pollinator declines and the value of understanding pollination functioning for single plant species like crops or threatened plants. We used spatially replicated, controlled single‐pollinator‐species removal experiments to assess how changes in bumble bee species richness impacted the production of fertilized seeds in a perennial herb—Delphinium barbeyi—in the Rocky Mountains of Colorado, USA. To improve predictability, we also assessed how traits and abundances in the plant and bumble bee communities were related toD. barbeyireproductive success. We hypothesized that trait‐matching between pollinator proboscis length andD. barbeyi's nectar spurs would produce a greater number of fertilized seeds, while morphological similarity within the floral community would dilute pollination services. We found that the effects of pollinator removal differed depending on the behavioral patterns of pollinators and compositional features of the plant and pollinator communities. While pollinator floral fidelity generally increasedD. barbeyiseed production, that positive effect was primarily evident when more than half of theBombuscommunity was experimentally removed. Similarly, communities comprising primarily long‐tongued bees were most beneficial toD. barbeyiseed production in tandem with a strong removal. Finally, we observed contrasting effects of morphological similarity in the plant community, with evidence of both competition and facilitation among plants. These results offer an example of the complex dynamics underlying ecosystem function in multitrophic systems and demonstrate that community context can impact diversity–functioning relationships between trophic levels. 
    more » « less
  5. Climate change is likely to alter both flowering phenology and water availability for plants. Either of these changes alone can affect pollinator visitation and plant reproductive success. The relative impacts of phenology and water, and whether they interact in their impacts on plant reproductive success remain, however, largely unexplored. We manipulated flowering phenology and soil moisture in a factorial experiment with the subalpine perennial Mertensia ciliata (Boraginaceae). We examined responses of floral traits, floral abundance, pollinator visitation, and composition of visits by bumblebees vs. other pollinators. To determine the net effects on plant reproductive success, we also measured seed production and seed mass. Reduced water led to shorter, narrower flowers that produced less nectar. Late flowering plants produced fewer and shorter flowers. Both flowering phenology and water availability influenced pollination and reproductive success. Differences in flowering phenology had greater effects on pollinator visitation than did changes in water availability, but the reverse was true for seed production and mass, which were enhanced by greater water availability. The probability of receiving a flower visit declined over the season, coinciding with a decline in floral abundance in the arrays. Among plants receiving visits, both the visitation rate and percent of non-bumblebee visitors declined after the first week and remained low until the final week. We detected interactions of phenology and water on pollinator visitor composition, in which plants subject to drought were the only group to experience a late-season resurgence in visits by solitary bees and flies. Despite that interaction, net reproductive success measured as seed production responded additively to the two manipulations of water and phenology. Commonly observed declines in flower size and reward due to drought or shifts in phenology may not necessarily result in reduced plant reproductive success, which in M. ciliata responded more directly to water availability. The results highlight the need to go beyond studying single responses to climate changes, such as either phenology of a single species or how it experiences an abiotic factor, in order to understand how climate change may affect plant reproductive success. 
    more » « less