Abstract Ecological restoration often targets plant community recovery, but restoration success may depend on the recovery of a complex web of biotic interactions to maintain biodiversity and promote ecosystem services. Specifically, management that drives resource availability, such as seeding richness and provenance, may alter species interactions across multiple trophic levels. Using experimentally seeded prairies, we examine three key groups—plants, pollinators and goldenrod crab spiders (Misumena vatia, predators of pollinators)—to understand the effects of species richness and admixture seed sourcing of restoration seed mixtures on multitrophic interactions.Working with prairie plants, we experimentally manipulated seed mix richness and the number of seed source regions (single‐source region or admixture seed sourcing). In each experimental prairie, we surveyed floral abundance and richness, pollinator visitation and plant–M. vatiainteractions.A high richness seed mix increased floral abundance when seeds were sourced from a single geographic region, and floral abundance strongly increased pollinator visitation,M. vatiaabundance and prey capture. Seeding richness and admixture seed sourcing of the seed mixture did not affect floral species richness, but floral species richness increased pollinator visitation.Pollinators interacted with different floral communities across seeding treatments, indicating a shift in visited floral species with restoration practices.Synthesis and applications. Long‐term success in prairie restoration requires the restoration of plant–arthropod interactions. We provide evidence that seed mix richness and admixture seed sourcing affect arthropod floral associations, but effective restoration of plant–arthropod interactions should consider total floral resource availability. Incorporating a food web perspective in restoration will strengthen approaches to whole ecosystem restoration. 
                        more » 
                        « less   
                    
                            
                            Community context mediates effects of pollinator loss on seed production
                        
                    
    
            Abstract A critical goal for ecologists is understanding how ongoing local and global species losses will affect ecosystem functions and services. Diversity–functioning relationships, which are well‐characterized in primary producer communities, are much less consistently predictable for ecosystem functions involving two or more trophic levels, particularly in situations where multiple species in one trophic level impact functional outcomes at another trophic level. This is particularly relevant to pollination functioning, given ongoing pollinator declines and the value of understanding pollination functioning for single plant species like crops or threatened plants. We used spatially replicated, controlled single‐pollinator‐species removal experiments to assess how changes in bumble bee species richness impacted the production of fertilized seeds in a perennial herb—Delphinium barbeyi—in the Rocky Mountains of Colorado, USA. To improve predictability, we also assessed how traits and abundances in the plant and bumble bee communities were related toD. barbeyireproductive success. We hypothesized that trait‐matching between pollinator proboscis length andD. barbeyi's nectar spurs would produce a greater number of fertilized seeds, while morphological similarity within the floral community would dilute pollination services. We found that the effects of pollinator removal differed depending on the behavioral patterns of pollinators and compositional features of the plant and pollinator communities. While pollinator floral fidelity generally increasedD. barbeyiseed production, that positive effect was primarily evident when more than half of theBombuscommunity was experimentally removed. Similarly, communities comprising primarily long‐tongued bees were most beneficial toD. barbeyiseed production in tandem with a strong removal. Finally, we observed contrasting effects of morphological similarity in the plant community, with evidence of both competition and facilitation among plants. These results offer an example of the complex dynamics underlying ecosystem function in multitrophic systems and demonstrate that community context can impact diversity–functioning relationships between trophic levels. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2129759
- PAR ID:
- 10421087
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 14
- Issue:
- 6
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Ecological restoration often targets plant community recovery, but restoration success may depend on the recovery of a complex web of biotic interactions to maintain biodiversity and promote ecosystem services. Specifically, management that drives resource availability, such as seeding richness and provenance, may alter species interactions across multiple trophic levels. Using experimentally seeded prairies, we examine three key groups – plants, pollinators, and goldenrod crab spiders (Misumena vatia, predators of pollinators) – to understand the effects of species richness and admixture seed sourcing of restoration seed mixtures on multi-trophic interactions. Working with prairie plants, we experimentally manipulated seed mix richness and the number of seed source regions (single-source region or admixture seed sourcing). In each experimental prairie, we surveyed floral abundance and richness, pollinator visitation, and plant-M. vatia interactions. A high-richness seed mix increased floral abundance when seeds were sourced from a single geographic region, and floral abundance strongly increased pollinator visitation, M. vatia abundance, and prey capture. Seeding richness and admixture seed sourcing of the seed mixture did not affect floral species richness, but floral species richness increased pollinator visitation. Pollinators interacted with different floral communities across seeding treatments, indicating a shift in visited floral species with restoration practices. Synthesis and applications. Long-term success in prairie restoration requires the restoration of plant-arthropod interactions. We provide evidence that seed mix richness and admixture seed sourcing affect arthropod floral associations, but effective restoration of plant-arthropod interactions should consider total floral resource availability. Incorporating a food web perspective in restoration will strengthen approaches to whole ecosystem restoration.more » « less
- 
            Infectious disease is a major driver of biodiversity loss, but how disease threatens pollinator communities remains poorly understood. Here, we review the plant–pollinator–pathogen literature to identify mechanisms by which plant and pollinator traits and community composition influence pathogen transmission and assess consequences of transmission on plant and pollinator fitness. We find that plant and pollinator traits that increase floral contact can amplify transmission, but community-level factors such as plant and pollinator abundance are often correlated and can counteract one another. Although disease reduces pollinator fitness in some species, little research has assessed cascading effects on pollination, and taxonomic representation outside of honey bees and bumble bees remains poor. Major open challenges include (a) disentangling correlations between plant and pollinator abundance to understand how community composition impacts pathogen transmission and (b) distinguishing when pathogen transmission results in disease. Addressing these issues, as well as expanding taxonomic representation of pollinators, will deepen our understanding of how pathogens impact diverse pollinator communities.more » « less
- 
            Abstract Understanding how anthropogenic disturbances affect plant–pollinator systems has important implications for the conservation of biodiversity and ecosystem functioning. Previous laboratory studies show that pesticides and pathogens, which have been implicated in the rapid global decline of pollinators over recent years, can impair behavioral processes needed for pollinators to adaptively exploit floral resources and effectively transfer pollen among plants. However, the potential for these sublethal stressor effects on pollinator–plant interactions at the individual level to scale up into changes to the dynamics of wild plant and pollinator populations at the system level remains unclear. We developed an empirically parameterized agent‐based model of a bumblebee pollination system called SimBee to test for effects of stressor‐induced decreases in the memory capacity and information processing speed of individual foragers on bee abundance (scenario 1), plant diversity (scenario 2), and bee–plant system stability (scenario 3) over 20 virtual seasons. Modeling of a simple pollination network of a bumblebee and four co‐flowering bee‐pollinated plant species indicated that bee decline and plant species extinction events could occur when only 25% of the forager population showed cognitive impairment. Higher percentages of impairment caused 50% bee loss in just five virtual seasons and system‐wide extinction events in less than 20 virtual seasons under some conditions. Plant species extinctions occurred regardless of bee population size, indicating that stressor‐induced changes to pollinator behavior alone could drive species loss from plant communities. These findings indicate that sublethal stressor effects on pollinator behavioral mechanisms, although seemingly insignificant at the level of individuals, have the cumulative potential in principle to degrade plant–pollinator species interactions at the system level. Our work highlights the importance of an agent‐based modeling approach for the identification and mitigation of anthropogenic impacts on plant–pollinator systems.more » « less
- 
            Wild pollinators are critical to maintaining ecosystem services and facilitating crop production, but habitat degradation and resource loss are leading to worldwide pollinator declines. Nutrient enrichment and changes in rainfall due to global warming are drivers of global environmental change, and likely to impact pollinator foraging behavior and reproductive success through changes to the growth and phenology of flowering plants. Here, we provide a short review of pollinator conservation in the context of nutritional ecology and plant-pollinator interactions. Then, we present novel research into the effects of nutrient and rainfall variation on plant phenology. In this study, we experimentally manipulated the amount of water and supplemental nutrients available to wild sunflower (Helianthus annuus) and goldenrod (Solidagospp.) throughout their growing season. We evaluated how changes in growth and bloom time could impact resource availability for bumble bee (Bombus impatiens) queens preparing to overwinter. We found that fertilizer and rainfall alter plant bloom time by 2–18 days, though flowering response was species-specific. Fertilizer did not significantly affect plant growth or number of flowers produced when plants were grown under drought conditions. When water was not limiting, fertilized sunflowers bloomed in floral pulses. These findings carry important implications for growers and land managers, providing insight into potential drivers of wild pollinator decline and possible conservation strategies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
