skip to main content


Title: Revisiting the relation between the number of globular clusters and galaxy mass for low-mass galaxies
ABSTRACT Using a new method to estimate total galaxy mass (MT) and two samples of low-luminosity galaxies containing measurements of the number of globular clusters (GCs) per galaxy (NGC), we revisit the NGC–MT relation using a total of 203 galaxies, 157 of which have MT ≤ 1010 M⊙. We find that the relation is nearly linear, NGC ∝ MT0.92 ± 0.08 down to at least MT ∼ 108.75 M⊙. Because the relationship extends to galaxies that average less than one GC per galaxy and to a mass range in which mergers are relatively rare, the relationship cannot be solely an emergent property of hierarchical galaxy formation. The character of the radial GC distribution in low-mass galaxies, and the lack of mergers at these galaxy masses, also appears to challenge models in which the GCs form in central, dissipatively concentrated high-density, high-pressure regions and are then scattered to large radius. The slight difference between the fitted power-law exponent and a value of one leaves room for a shallow MT-dependent variation in the mean mass per GC that would allow the relation between total mass in GCs and MT to be linear.  more » « less
Award ID(s):
2006785
NSF-PAR ID:
10420001
Author(s) / Creator(s):
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
513
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2609 to 2614
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The globular cluster (GC) systems of low-mass late-type galaxies, such as NGC 2403, have been poorly studied to date. As a low mass galaxy (M*  = 7 × 109 M⊙), cosmological simulations predict NGC 2403 to contain few, if any, accreted GCs. It is also isolated, with a remarkably undisturbed HI disc. Based on candidates from the literature, Sloan Digital Sky Survey and Hyper Suprime-Cam imaging, we selected several GCs for follow-up spectroscopy using the Keck Cosmic Web Imager. From their radial velocities and other properties, we identify eight bona-fide GCs associated with either the inner halo or the disc of this bulgeless galaxy. A stellar population analysis suggests a wide range of GC ages from shortly after the big bang until the present day. We find all of the old GCs to be metal-poor with [Fe/H] ≤ −1. The age–metallicity relation for the observed GCs suggests that they were formed over many Gyr from gas with a low effective yield, similar to that observed in the SMC. Outflows of enriched material may have contributed to the low yield. With a total system of ∼50 GCs expected, our study is the first step in fully mapping the star cluster history of NGC 2403 in both space and time.

     
    more » « less
  2. Abstract The dense central regions of tidally disrupted galaxies can survive as ultracompact dwarfs (UCDs) that hide among the luminous globular clusters (GCs) in the halo of massive galaxies. An exciting confirmation of this model is the detection of overmassive black holes in the centers of some UCDs, which also lead to elevated dynamical mass-to-light ratios ( M / L dyn ). Here we present new high-resolution spectroscopic observations of 321 luminous GC candidates in the massive galaxy NGC 5128/Centaurus A. Using these data we confirm 27 new luminous GCs, and measure velocity dispersions for 57 luminous GCs (with g -band luminosities between 2.5 × 10 5 and 2.5 × 10 7 L ⊙ ), of which 48 are new measurements. Combining these data with size measurements from Gaia, we determine the M / L dyn for all 57 luminous GCs. We see a clear bimodality in the M / L dyn distribution, with a population of normal GCs with mean M / L dyn = 1.51 ± 0.31, and a second population of ∼20 GCs with elevated mean M / L dyn = 2.68 ± 0.22. We show that black holes with masses ∼4%–18% of the luminous GCs can explain the elevated mass-to-light ratios. Hence, it is plausible that the NGC 5128 sources with elevated M / L dyn are mostly stripped galaxy nuclei that contain massive central black holes, though future high spatial resolution observations are necessary to confirm this hypothesis for individual sources. We also present a detailed discussion of an extreme outlier, VHH81-01 , one of the largest and most massive GC in NGC 5128, making it an exceptionally strong candidate to be a tidally stripped nucleus. 
    more » « less
  3. ABSTRACT We present an analysis of Hubble Space Telescope observations of globular clusters (GCs) in six ultradiffuse galaxies (UDGs) in the Coma cluster, a sample that represents UDGs with large effective radii (Re), and use the results to evaluate competing formation models. We eliminate two significant sources of systematic uncertainty in the determination of the number of GCs, NGC by using sufficiently deep observations that (i) reach the turnover of the globular cluster luminosity function (GCLF) and (ii) provide a sufficient number of GCs with which to measure the GC number radial distribution. We find that NGC for these galaxies is on average ∼ 20, which implies an average total mass, Mtotal, ∼ 1011 M⊙ when applying the relation between NGC and Mtotal. This value of NGC lies at the upper end of the range observed for dwarf galaxies of the same stellar mass and is roughly a factor of two larger than the mean. The GCLF, radial profile, and average colour are more consistent with those observed for dwarf galaxies than with those observed for the more massive (L*) galaxies, while both the radial and azimuthal GC distributions closely follow those of the stars in the host galaxy. Finally, we discuss why our observations, specifically the GC number and GC distribution around these six UDGs, pose challenges for several of the currently favoured UDG formation models. 
    more » « less
  4. ABSTRACT

    The existence of globular clusters (GCs) in a few satellite galaxies, and their absence in majority of dwarf galaxies, present a challenge for models attempting to understand the origins of GCs. In addition to GC presence appearing stochastic and difficult to describe with average trends, in the smallest satellite galaxies GCs contribute a substantial fraction of total stellar mass. We investigate the stochasticity and number of GCs in dwarf galaxies using an updated version of our model that links the formation of GCs to the growth of the host galaxy mass. We find that more than 50 per cent of dwarf galaxies with stellar mass $M_{\star }\lesssim 2\times 10^7\, \mathrm{M}_\odot$ do not host GCs, whereas dwarfs with $M_{\star }\sim 10^8\, \mathrm{M}_\odot$ almost always contain some GCs, with a median number ∼10 at z  = 0. These predictions are in agreement with the observations of the Local Volume dwarfs. We also confirm the near-linear GC system mass–halo mass relation down to $M_{\mathrm{h}}\simeq 10^8\, \mathrm{M}_\odot$ under the assumption that GC formation and evolution in galaxies of all mass can be described by the same physical model. A detailed case study of two model dwarfs that resemble the Fornax dwarf spheroidal galaxy shows that observational samples can be notably biased by incompleteness below detection limit and at large radii.

     
    more » « less
  5. null (Ed.)
    ABSTRACT Globular clusters (GCs) are often used to estimate the dark matter content of galaxies, especially dwarf galaxies, where other kinematic tracers are lacking. These estimates typically assume spherical symmetry and dynamical equilibrium, assumptions that may not hold for the sparse GC population of dwarfs in galaxy clusters. We use a catalogue of GCs tagged on to the Illustris simulation to study the accuracy of GC-based mass estimates. We focus on galaxies in the stellar mass range 108–1011.8 M⊙ identified in nine simulated Virgo-like clusters. Our results indicate that mass estimates are, on average, accurate in systems with GC numbers NGC ≥ 10 and where the uncertainty of individual GC line-of-sight velocities is smaller than the inferred velocity dispersion, σGC. In cases where NGC ≤ 10, however, biases may result, depending on how σGC is computed. We provide calibrations that may help alleviate these biases in methods widely used in the literature. As an application, we find a number of dwarfs with $M_{*} \sim 10^{8.5}\, \mathrm{M}_{\odot }$ – comparable with the ultra-diffuse galaxy NGC 1052-DF2 (DF2), notable for the low σGC of its 10 GCs – that have $\sigma _{\rm GC} \sim 7\!-\!15\, {\rm km \,s}^{-1}$. These DF2 analogues correspond to relatively massive systems at their infall time (M200 ∼ 1–3 × 1011 M⊙), which have retained only 3–17 GCs and have been stripped of more than 95 per cent of their dark matter. Our results suggest that extreme tidal mass loss in otherwise normal dwarf galaxies may be a possible formation channel for ultra-diffuse objects such as DF2. 
    more » « less