The Galactic globular cluster (GC) NGC 3201 is the first Galactic GC observed to host dynamically confirmed stellar-mass black holes (BHs), containing two confirmed and one candidate BH. This result indicates that GCs can retain BHs, which has important implications for GC evolution. NGC 3201 has been observed as part of the MAVERIC survey of Galactic GCs. We use these data to confirm that there is no radio or X-ray detection of the three BHs, and present the first radio and X-ray limits on these sources. These limits indicate that any accretion present is at an extremely low rate and may be extremely inefficient. In particular, for the system ACS ID #21859, by assuming the system is tidally locked and any accretion is through the capture of the companion’s winds, we constrain the radiative efficiency of any accretion to ≲ 1.5 × 10−5. We also combine the radio and X-ray source catalogues from the MAVERIC survey with the existing MUSE spectroscopic surveys and the HUGS catalogue of NGC 3201 to provide a catalogue of 42 multiwavelength sources in this cluster. We identify a new red straggler source with X-ray emission, and investigate the multiwavelength properties of the sub-subgiant population in the cluster.
- Publication Date:
- NSF-PAR ID:
- 10341629
- Journal Name:
- The Astrophysical Journal
- Volume:
- 929
- Issue:
- 2
- Page Range or eLocation-ID:
- 147
- ISSN:
- 0004-637X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT Globular clusters (GCs) are often used to estimate the dark matter content of galaxies, especially dwarf galaxies, where other kinematic tracers are lacking. These estimates typically assume spherical symmetry and dynamical equilibrium, assumptions that may not hold for the sparse GC population of dwarfs in galaxy clusters. We use a catalogue of GCs tagged on to the Illustris simulation to study the accuracy of GC-based mass estimates. We focus on galaxies in the stellar mass range 108–1011.8 M⊙ identified in nine simulated Virgo-like clusters. Our results indicate that mass estimates are, on average, accurate in systems with GC numbers NGC ≥ 10 and where the uncertainty of individual GC line-of-sight velocities is smaller than the inferred velocity dispersion, σGC. In cases where NGC ≤ 10, however, biases may result, depending on how σGC is computed. We provide calibrations that may help alleviate these biases in methods widely used in the literature. As an application, we find a number of dwarfs with $M_{*} \sim 10^{8.5}\, \mathrm{M}_{\odot }$ – comparable with the ultra-diffuse galaxy NGC 1052-DF2 (DF2), notable for the low σGC of its 10 GCs – that have $\sigma _{\rm GC} \sim 7\!-\!15\, {\rm km \,s}^{-1}$. These DF2 analogues correspond tomore »
-
ABSTRACT We present an analysis of Hubble Space Telescope observations of globular clusters (GCs) in six ultradiffuse galaxies (UDGs) in the Coma cluster, a sample that represents UDGs with large effective radii (Re), and use the results to evaluate competing formation models. We eliminate two significant sources of systematic uncertainty in the determination of the number of GCs, NGC by using sufficiently deep observations that (i) reach the turnover of the globular cluster luminosity function (GCLF) and (ii) provide a sufficient number of GCs with which to measure the GC number radial distribution. We find that NGC for these galaxies is on average ∼ 20, which implies an average total mass, Mtotal, ∼ 1011 M⊙ when applying the relation between NGC and Mtotal. This value of NGC lies at the upper end of the range observed for dwarf galaxies of the same stellar mass and is roughly a factor of two larger than the mean. The GCLF, radial profile, and average colour are more consistent with those observed for dwarf galaxies than with those observed for the more massive (L*) galaxies, while both the radial and azimuthal GC distributions closely follow those of the stars in the host galaxy. Finally, we discuss whymore »
-
Abstract The nearby, luminous infrared galaxy NGC 7469 hosts a Seyfert nucleus with a circumnuclear star-forming ring and is thus the ideal local laboratory for investigating the starburst–AGN (active galactic nucleus) connection in detail. We present integral-field observations of the central 1.3 kpc region in NGC 7469 obtained with the JWST Mid-InfraRed Instrument. Molecular and ionized gas distributions and kinematics at a resolution of ∼100 pc over the 4.9–7.6
μ m region are examined to study the gas dynamics influenced by the central AGN. The low-ionization [Feii ]λ 5.34μ m and [Arii ]λ 6.99μ m lines are bright on the nucleus and in the starburst ring, as opposed to H2S(5)λ 6.91μ m, which is strongly peaked at the center and surrounding ISM. The high-ionization [Mgv ] line is resolved and shows a broad, blueshifted component associated with the outflow. It has a nearly face-on geometry that is strongly peaked on the nucleus, where it reaches a maximum velocity of −650 km s−1, and extends about 400 pc to the east. Regions of enhanced velocity dispersion in H2and [Feii ] ∼ 180 pc from the AGN that also show highL (H2)/L (PAH) andL ([Feii ])/L (Pfα ) ratios to the W and N of the nucleus pinpoint regions where the ionized outflow is depositing energy, via shocks, into themore » -
Abstract We present ALMA [C ii] line and far-infrared (FIR) continuum observations of three $z \gt 6$ low-luminosity quasars ($M_{\rm 1450} \gt -25$ mag) discovered by our Subaru Hyper Suprime-Cam (HSC) survey. The [C ii] line was detected in all three targets with luminosities of $(2.4\mbox{--}9.5) \times 10^8\, L_{\odot }$, about one order of magnitude smaller than optically luminous ($M_{\rm 1450} \lesssim -25$ mag) quasars. The FIR continuum luminosities range from $\lt 9 \times 10^{10}\, L_{\odot }$ (3 $\sigma$ limit) to ${\sim } 2 \times 10^{12}\, L_{\odot }$, indicating a wide range in star formation rates in these galaxies. Most of the HSC quasars studied thus far show [C ii]/ FIR luminosity ratios similar to local star-forming galaxies. Using the [C ii]-based dynamical mass ($M_{\rm dyn}$) as a surrogate for bulge stellar mass ($M_{\rm\, bulge}$), we find that a significant fraction of low-luminosity quasars are located on or even below the local $M_{\rm\, BH}$–$M_{\rm\, bulge}$ relation, particularly at the massive end of the galaxy mass distribution. In contrast, previous studies of optically luminous quasars have found that black holes are overmassive relative to the local relation. Given the low luminosities of our targets, we are exploring the nature of the early co-evolution of supermassive black holes andmore »