skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Erosion and weathering in carbonate regions reveal climatic and tectonic drivers of carbonate landscape evolution
Abstract. Carbonate rocks are highly reactive and can have higher ratios of chemical weathering to total denudation relative to most other rock types. Their chemical reactivity affects the first-order morphology of carbonate-dominated landscapes and their climate sensitivity to weathering.However, there have been few efforts to quantify the partitioning ofdenudation into mechanical erosion and chemical weathering in carbonatelandscapes such that their sensitivity to changing climatic and tectonicconditions remains elusive. Here, we compile bedrock and catchment-averagedcosmogenic calcite–36Cl denudation rates and compare them to weathering rates derived from stream water chemistry from the same regions. Local bedrock denudation and weathering rates are comparable, ∼20–40 mm ka−1, whereas catchment-averaged denudation rates are ∼2.7 times higher. The discrepancy between bedrock and catchment-averaged denudation is 5 times lower compared to silicate-rich rocks, illustrating that elevated weathering rates make denudation more spatially uniform in carbonate-dominated landscapes. Catchment-averaged denudation rates correlate well with topographic relief and hillslope gradients, and moderate correlations with runoff can be explained by concurrent increases in weathering rates. Comparing denudation rates with weathering rates shows that mechanical erosion processes contribute ∼50 % of denudation in southern France and ∼70 % in Greece and Israel. Our results indicate that the partitioning between largely slope-independent chemical weathering and slope-dependent mechanical erosion varies based on climate and tectonics and impacts the landscape morphology. This leads us to propose a conceptual model whereby in humid, slowly uplifting regions, carbonates are associated with low-lying, flat topography because slope-independent chemical weathering dominates denudation. In contrast, in arid climates with rapid rock uplift rates, carbonate rocks form steep mountains that facilitate rapid, slope-dependent mechanical erosion required to compensate for inefficient chemical weathering and runoff loss to groundwater systems. This result suggests that carbonates represent an end member for interactions between climate, tectonics, and lithology.  more » « less
Award ID(s):
2041910 2139894 1945970
PAR ID:
10420036
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Earth Surface Dynamics
Volume:
11
Issue:
2
ISSN:
2196-632X
Page Range / eLocation ID:
247 to 257
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The emerging field of quartz luminescence properties in Earth-surface processes research shows promise, with optically stimulated luminescence (OSL) sensitivity proposed as a valuable tool for provenance or sediment history tracing. However, the geologic processes that lead to quartz sensitization remain under investigation. Here we study the impact of source rock and surface processes on the luminescence properties of quartz sand from bedrock and modern and Late Pleistocene alluvium generated from a mountainous catchment in northern Utah, USA. Continuous wave and linear modulated OSL are used to characterize the luminescence sensitivity and intensity of the fast-decay component. We compare the OSL sensitivity with sand-grain provenance and with proxies for surface processes such as topographic metrics, cosmogenic 10Be-derived erosion rates, chemical weathering indices, and magnetic susceptibility. Late Pleistocene sediment has low OSL sensitivity and a weak fast-decay component, similar to bedrock samples from the source area. In contrast, modern alluvium is dominated by the fast-decay component and has higher and more variable OSL sensitivity, with no clear relationship to bedrock sources in their prospective catchment areas. There is, however, an inverse relationship between OSL sensitivity and catchment-averaged erosion rates and a positive relationship with chemical weathering indices and magnetic susceptibility. These metrics suggest that the modern alluvium has experienced increased residence time in the shallow critical zone compared to the Late Pleistocene sediments. We suggest that changes in hillslope processes between the effectively wetter, cooler Pleistocene and the dryer, warmer conditions of the Holocene modulated the luminescence properties. The results suggest that climatic controls on rates and processes of chemical and mechanical weathering and sediment transport and residence within the critical zone are encoded in the luminescence properties of quartz sand. 
    more » « less
  2. Abstract Weathering of ultramafic rocks emplaced at low latitude during arc‐arc and arc‐continent collisions may provide an important sink for atmospheric CO2over geologic timescales. Accurately modeling the effects of ultramafic rock weathering on Earth's carbon cycle and climate requires understanding mass fluxes from ultramafic landscapes. In this study, physical erosion and chemical weathering fluxes and weathering intensity are quantified in 15 watersheds across the Monte del Estado, a serpentinite massif in Puerto Rico, using measurements of in situ36Cl in magnetite, stream solute fluxes, and sediment geochemistry. Despite high relief in the study watersheds, erosion fluxes are moderate (22–109 tons km−2 yr−1), chemical weathering fluxes are large (55–143 tons km−2 yr−1), and weathering intensities are among the highest yet reported for silicate‐rock weathering (up to 0.88). We use these data to parameterize power‐law relationships between weathering, erosion, and runoff. We interpret the relative importance of climate versus erosion in setting weathering fluxes and CO2consumption from the best‐fit power‐law slopes. Weathering fluxes from tropical, montane serpentinite landscapes are found to be strongly controlled by runoff and weakly controlled by the supply of fresh rock to the weathering zone through physical erosion. The strong runoff dependence of weathering fluxes implies that, to the extent that precipitation rates are coupled to global temperature, ultramafic landscapes may be important participants in the negative silicate weathering feedback, increasing (decreasing) CO2consumption in response to a warming (cooling) climate. Thus, serpentinite landscapes may help stabilize Earth's climate state through time. 
    more » « less
  3. Abstract Terrestrial cosmogenic nuclides (TCN) are widely employed to infer denudation rates in mountainous landscapes. The calculation of an inferred denudation rate (Dinf) from TCN concentrations is typically performed under the assumptions that denudation rates were steady during TCN accumulation and that soil chemical weathering negligibly impacted soil mineral abundances. In many landscapes, however, denudation rates were not steady and soil composition was significantly impacted by chemical weathering, which complicates interpretation of TCN concentrations. We present a landscape evolution model that computes transient changes in topography, soil thickness, soil mineralogy, and soil TCN concentrations. We used this model to investigate TCN responses in transient landscapes by imposing idealized perturbations in tectonically (rock uplift rate) and climatically sensitive parameters (soil production efficiency, hillslope transport efficiency, and mineral dissolution rate) on initially steady‐state landscapes. These experiments revealed key insights about TCN responses in transient landscapes. (a) Accounting for soil chemical erosion is necessary to accurately calculateDinf. (b) Responses ofDinfto tectonic perturbations differ from those to climatic perturbations, suggesting that spatial and temporal patterns inDinfare signatures of perturbation type and magnitude. (c) If soil chemical erosion is accounted for, basin‐averagedDinfinferred from TCN in stream sediment closely tracks actual basin‐averaged denudation rate, showing thatDinfis a reasonable proxy for actual denudation rate, even in many transient landscapes. (d) Response times ofDinfto perturbations increase with hillslope length, implying that response times should be sensitive to the climatic, biological, and lithologic processes that control hillslope length. 
    more » « less
  4. Abstract. Debris flows regularly traverse bedrock channels that dissect steep landscapes, but our understanding of bedrock erosion by debris flows and their impact on steepland morphology is still rudimentary. Quantitative models of steep bedrock channel networks are based on geomorphic transport laws designed to represent erosion by water-dominated flows. To quantify the impact of debris flow erosion on steep channel network form, it is first necessary to develop methods to estimate spatial variations in bulk debris flow properties (e.g., flow depth, velocity) throughout the channel network that can be integrated into landscape evolution models. Here, we propose and evaluate two methods to estimate spatial variations in bulk debris flow properties along the length of a channel profile. We incorporate both methods into a model designed to simulate the evolution of longitudinal channel profiles that evolve in response to debris flow and fluvial processes. To explore this model framework, we propose a general family of debris flow erosion laws where erosion rate is a function of debris flow depth and channel slope. Model results indicate that erosion by debris flows can explain the occurrence of a scaling break in the slope–area curve at low-drainage areas and that upper-network channel morphology may be useful for inferring catchment-averaged erosion rates in quasi-steady landscapes. Validating specific forms of a debris flow incision law, however, would require more detailed model–data comparisons in specific landscapes where input parameters and channel morphometry can be better constrained. Results improve our ability to interpret topographic signals within steep channel networks and identify observational targets critical for constraining a debris flow incision law. 
    more » « less
  5. Abstract Erosional perturbations from changes in climate or tectonics are recorded in the profiles of bedrock rivers, but these signals can be challenging to unravel in settings with non‐uniform lithology. In layered rocks, the surface lithology at a given location varies through time as erosion exposes different layers of rock. Recent modeling studies have used the Stream Power Model (SPM) to highlight complex variations in erosion rates that arise in bedrock rivers incising through layered rocks. However, these studies do not capture the effects of coarse sediment cover on channel evolution. We use the “Stream Power with Alluvium Conservation and Entrainment” (SPACE) model to explore how sediment cover influences landscape evolution and modulates the topographic expression of erodibility contrasts in horizontally layered rocks. We simulate river evolution through alternating layers of hard and soft rock over million‐year timescales with a constant and uniform uplift rate. Compared to the SPM, model runs with sediment cover have systematically higher channel steepness values in soft rock layers and lower channel steepness values in hard rock layers. As more sediment accumulates, the contrast in steepness between the two rock types decreases. Effective bedrock erodibilities back‐calculated assuming the SPM are strongly influenced by sediment cover. We also find that sediment cover can significantly increase total relief and timescales of adjustment toward landscape‐averaged steady‐state topography and erosion rates. 
    more » « less