skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Erosion and weathering in carbonate regions reveal climatic and tectonic drivers of carbonate landscape evolution
Abstract. Carbonate rocks are highly reactive and can have higher ratios of chemical weathering to total denudation relative to most other rock types. Their chemical reactivity affects the first-order morphology of carbonate-dominated landscapes and their climate sensitivity to weathering.However, there have been few efforts to quantify the partitioning ofdenudation into mechanical erosion and chemical weathering in carbonatelandscapes such that their sensitivity to changing climatic and tectonicconditions remains elusive. Here, we compile bedrock and catchment-averagedcosmogenic calcite–36Cl denudation rates and compare them to weathering rates derived from stream water chemistry from the same regions. Local bedrock denudation and weathering rates are comparable, ∼20–40 mm ka−1, whereas catchment-averaged denudation rates are ∼2.7 times higher. The discrepancy between bedrock and catchment-averaged denudation is 5 times lower compared to silicate-rich rocks, illustrating that elevated weathering rates make denudation more spatially uniform in carbonate-dominated landscapes. Catchment-averaged denudation rates correlate well with topographic relief and hillslope gradients, and moderate correlations with runoff can be explained by concurrent increases in weathering rates. Comparing denudation rates with weathering rates shows that mechanical erosion processes contribute ∼50 % of denudation in southern France and ∼70 % in Greece and Israel. Our results indicate that the partitioning between largely slope-independent chemical weathering and slope-dependent mechanical erosion varies based on climate and tectonics and impacts the landscape morphology. This leads us to propose a conceptual model whereby in humid, slowly uplifting regions, carbonates are associated with low-lying, flat topography because slope-independent chemical weathering dominates denudation. In contrast, in arid climates with rapid rock uplift rates, carbonate rocks form steep mountains that facilitate rapid, slope-dependent mechanical erosion required to compensate for inefficient chemical weathering and runoff loss to groundwater systems. This result suggests that carbonates represent an end member for interactions between climate, tectonics, and lithology.  more » « less
Award ID(s):
2041910 2139894 1945970
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Earth Surface Dynamics
Page Range / eLocation ID:
247 to 257
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding the extent to which local factors, including bedrock and structure, govern catchment denudation in mountainous environments as opposed to broader climate or tectonic patterns provides insight into how landscapes evolve as sediment is generated and transported through them, and whether they have approached steady‐state equilibrium. We measured beryllium‐10 (10Be) concentrations in 21 sediment samples from glaciated footwall and hanging wall catchments, including a set of nested catchments, and 12 bedrock samples in the Puga and Tso Morari half‐grabens located in the high‐elevation, arid Zanskar region of northern India. In the Puga half‐graben where catchments are underlain by quartzo‐feldspathic gneissic bedrock, bedrock along catchment divides is eroding very slowly, about 5 m/Ma, due to extreme aridity and10Be concentrations in catchment sediments are the highest (~60–90 × 105atoms/g SiO2) as colluvium accumulates on hillslopes, decoupled from their ephemeral streams. At Puga,10Be concentrations and the average erosion rates of a set of six nested catchments demonstrate that catchment denudation is transport‐limited as sediment stagnates on lower slopes before reaching the catchment outlet. In the Tso Morari half‐graben, gneissic bedrock is also eroding very slowly but10Be concentrations in sediments in catchments underlain by low grade meta‐sedimentary rocks, are significantly lower (~10–35 × 105atoms/g SiO2). In these arid, high‐elevation environments,10Be concentrations in catchment sediments have more to do with bedrock weathering and transport times than steady‐state denudation rates. © 2020 John Wiley & Sons, Ltd.

    more » « less
  2. Abstract. Debris flows regularly traverse bedrock channels that dissect steep landscapes, but our understanding of bedrock erosion by debris flows and their impact on steepland morphology is still rudimentary. Quantitative models of steep bedrock channel networks are based on geomorphic transport laws designed to represent erosion by water-dominated flows. To quantify the impact of debris flow erosion on steep channel network form, it is first necessary to develop methods to estimate spatial variations in bulk debris flow properties (e.g., flow depth, velocity) throughout the channel network that can be integrated into landscape evolution models. Here, we propose and evaluate two methods to estimate spatial variations in bulk debris flow properties along the length of a channel profile. We incorporate both methods into a model designed to simulate the evolution of longitudinal channel profiles that evolve in response to debris flow and fluvial processes. To explore this model framework, we propose a general family of debris flow erosion laws where erosion rate is a function of debris flow depth and channel slope. Model results indicate that erosion by debris flows can explain the occurrence of a scaling break in the slope–area curve at low-drainage areas and that upper-network channel morphology may be useful for inferring catchment-averaged erosion rates in quasi-steady landscapes. Validating specific forms of a debris flow incision law, however, would require more detailed model–data comparisons in specific landscapes where input parameters and channel morphometry can be better constrained. Results improve our ability to interpret topographic signals within steep channel networks and identify observational targets critical for constraining a debris flow incision law.

    more » « less
  3. Abstract

    Lithium isotope ratios (δ7Li) of rivers are increasingly serving as a diagnostic of the balance between chemical and physical weathering contributions to overall landscape denudation rates. Here, we show that intermediate weathering intensities and highly enriched stream δ7Li values typically associated with lowland floodplains can also describe small upland watersheds subject to cool, wet climates. This behavior is revealed by stream δ7Li between +22.4 and +23.5‰ within a Critical Zone observatory located in the Cévennes region of southern France, where dilute stream solute concentrations and significant atmospheric deposition otherwise mask evidence of incongruence. The water‐rock reaction pathways underlying this behavior are quantified through a multicomponent, isotope‐enabled reactive transport model. Using geochemical characterization of soil profiles, bedrock, and long‐term stream samples as constraints, we evolve the simulation from an initially unweathered granite to a steady state weathering profile which reflects the balance between (a) fluid infiltration and drainage and (b) bedrock uplift and soil erosion. Enriched stream δ7Li occurs because Li is strongly incorporated into actively precipitating secondary clay phases beyond what prior laboratory experiments have suggested. Chemical weathering incongruence is maintained despite relatively slow reaction rates and moderate clay accumulation due to a combination of two factors. First, reactive primary mineral phases persist across the weathering profile and effectively “shield” the secondary clays from resolubilization due to their greater solubility. Second, the clays accumulating in the near‐surface profile are relatively mature weathering byproducts. These factors promote characteristically low total dissolved solute export from the catchment despite significant input of exogenous dust.

    more » « less
  4. Abstract

    Earth's Critical Zone (CZ), the near‐surface layer where rock is weathered and landscapes co‐evolve with life, is profoundly influenced by the type of underlying bedrock. Previous studies employing the CZ framework have focused primarily on landscapes dominated by silicate rocks. However, carbonate rocks crop out on approximately 15% of Earth's ice‐free continental surface and provide important water resources and ecosystem services to ∼1.2 billion people. Unlike silicates, carbonate minerals weather congruently and have high solubilities and rapid dissolution kinetics, enabling the development of large, interconnected pore spaces and preferential flow paths that restructure the CZ. Here we review the state of knowledge of the carbonate CZ, exploring parameters that produce contrasts in the CZ in different carbonate settings and identifying important open questions about carbonate CZ processes. We introduce the concept of a carbonate‐silicate CZ spectrum and examine whether current conceptual models of the CZ, such as the conveyor model, can be applied to carbonate landscapes. We argue that, to advance beyond site‐specific understanding and develop a more general conceptual framework for the role of carbonates in the CZ, we need integrative studies spanning both the carbonate‐silicate spectrum and a range of carbonate settings.

    more » « less
  5. Abstract

    The porous near‐surface layer of the Earth's crust – the critical zone – constitutes a vital reservoir of water for ecosystems, provides baseflow to streams, guides recharge to deep aquifers, filters contaminants from groundwater, and regulates the long‐term evolution of landscapes. Recent work suggests that the controls on regolith thickness include climate, tectonics, lithology, and vegetation. However, the relative paucity of observations of regolith structure and properties at landscape scales means that theoretical models of critical zone structure are incompletely tested. Here we present seismic refraction and electrical resistivity surveys that thoroughly characterize subsurface structure in a small catchment in the Santa Catalina Mountains, Arizona, USA, where slope‐aspect effects on regolith structure are expected based on differences in vegetation. Our results show a stark contrast in physical properties and inferred regolith thickness on opposing slopes, but in the opposite sense of that expected from environmental models and observed vegetation patterns. Although vegetation (as expressed by normalized difference vegetation index [NDVI]) is denser on the north‐facing slope, regolith on the south‐facing slope is four times thicker (as indicated by lower seismic velocities and resistivities). This contrast cannot be explained by variations in topographic stress or conventional hillslope morphology models. Instead, regolith thickness appears to be controlled by metamorphic foliation: regolith is thicker where foliation dips into the topography, and thinner where foliation is nearly parallel to the surface. We hypothesize that, in this catchment, hydraulic conductivity and infiltration capacity control weathering: infiltration is hindered and regolith is thin where foliation is parallel to the surface topography, whereas water infiltrates deeper and regolith is thicker where foliation intersects topography at a substantial angle. These results suggest that bedrock foliation, and perhaps by extension sedimentary layering, can control regolith thickness and must be accounted for in models of critical zone development. © 2020 John Wiley & Sons, Ltd.

    more » « less