skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2041910

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract River terraces are commonly used to infer climate and tectonic histories. Yet, it is increasingly recognised that other processes, such as river capture, can affect river terrace genesis and incision rates and patterns. In this study, we conduct a field‐based investigation of river terrace sequences along the Kolokithas and Varitis Rivers in central Crete, Greece, that share a confluence and preserve geomorphic evidence for the recent capture of the Kolokithas headwaters by the Varitis. We use digital topographic analysis, mapping, and optically stimulated luminescence (OSL) geochronology to quantify the river terrace and bedrock incision response to river capture. Topographic analysis indicates the Varitis captured ~30 km2of drainage area from the Kolokithas. We find differences in terrace characteristics, number of terraces, and incision rates and patterns on the adjacent valleys. The Kolokithas has four terrace levels, and the Varitis has five. All terraces are strath terraces, except for the oldest on the Kolokithas, a ~8 m thick fill terrace that starkly contrasts the time‐equivalent ~1–2 m thick strath terrace on the Varitis. Relative and absolute age control suggests three Pleistocene terraces were emplaced during cooler climate intervals, and two Holocene terraces are perhaps because of anthropogenic disturbances. The incision patterns differ on each valley, with generally more incision upstream on the Varitis relative to the Kolokithas. Incision rates on the Varitis are roughly twice as high as on the Kolokithas, but the average incision rate of both valleys combined is comparable to coastal rock uplift rates derived from marine terraces. Collectively, our results suggest that fluvial systems are sensitive to climate and tectonic processes even when affected by geomorphic disturbances, like river capture and beheading. However, care must be taken when interpreting river terraces as direct records of climate and tectonic processes, particularly when working on a single river valley. 
    more » « less
  2. Free, publicly-accessible full text available January 1, 2026
  3. Few natural examples exist where climate’s influence on tectonics is clear. Based on a study of the Sangre de Cristo Mountains in southern Colorado, we argue that climate-driven changes in ice loads affected spatial and temporal slip patterns on the range-front normal fault. Relict glacial features enable the reconstruction of paleoglacier extents and show variable amounts of footwall ice coverage during the Last Glacial Maximum (LGM). Line load models indicate post-LGM ice melting reduced fault clamping stress by ~20–55 kPa at seismic depths. Flexural isostatic modeling shows several meters of footwall uplift due to ice unloading with spatial patterns and magnitudes consistent with post-LGM fault throw measured from offset Holocene and late Pleistocene alluvial fans. Post-LGM fault throw rates are at least a factor of five higher than middle and early Pleistocene rates. We infer that climate-modulated ice-load changes can pace fault clamping stress and slip patterns on range-bounding normal faults. 
    more » « less
    Free, publicly-accessible full text available November 13, 2025
  4. Evidence from landscape evolution may provide critical constraints for past geodynamic processes, but has been limited by the large uncertainties of topographic reconstructions. Here we present continuous 30-million-year rock uplift histories for three catchments in the Calabrian forearc of southern Italy, using a data-driven inversion of tectonic geomorphology measurements. We find that rock uplift rates were high (>1 mm yr−1) from about 30 to 25 million years ago (Ma) and progressively declined to <0.4 mm yr−1 by ~15 Ma, then remained low before abruptly increasing around 1.5–1.0 Ma. These uplift rates do not match the forearc’s subduction velocity record, implying that uplift was not dominated by crustal thickening due to subduction-driven sediment influx. Through comparisons with slab descent reconstructions, we instead argue that the forearc uplift history primarily reflects the progressive establishment and abrupt destruction of an upper-mantle convection cell with strong negative buoyancy. We suggest that the convection cell vigour increased as the slab-induced mantle flow field began to interact with the 660-km mantle transition zone, causing uplift rates to decline from 25 to 15 Ma. Then, once the slab encountered the transition zone, the fully established convection cell subdued uplift rates, before being disrupted by slab fragmentation in the Quaternary, driving rapid forearc uplift. 
    more » « less
  5. Abstract. Carbonate rocks are highly reactive and can have higher ratios of chemical weathering to total denudation relative to most other rock types. Their chemical reactivity affects the first-order morphology of carbonate-dominated landscapes and their climate sensitivity to weathering.However, there have been few efforts to quantify the partitioning ofdenudation into mechanical erosion and chemical weathering in carbonatelandscapes such that their sensitivity to changing climatic and tectonicconditions remains elusive. Here, we compile bedrock and catchment-averagedcosmogenic calcite–36Cl denudation rates and compare them to weathering rates derived from stream water chemistry from the same regions. Local bedrock denudation and weathering rates are comparable, ∼20–40 mm ka−1, whereas catchment-averaged denudation rates are ∼2.7 times higher. The discrepancy between bedrock and catchment-averaged denudation is 5 times lower compared to silicate-rich rocks, illustrating that elevated weathering rates make denudation more spatially uniform in carbonate-dominated landscapes. Catchment-averaged denudation rates correlate well with topographic relief and hillslope gradients, and moderate correlations with runoff can be explained by concurrent increases in weathering rates. Comparing denudation rates with weathering rates shows that mechanical erosion processes contribute ∼50 % of denudation in southern France and ∼70 % in Greece and Israel. Our results indicate that the partitioning between largely slope-independent chemical weathering and slope-dependent mechanical erosion varies based on climate and tectonics and impacts the landscape morphology. This leads us to propose a conceptual model whereby in humid, slowly uplifting regions, carbonates are associated with low-lying, flat topography because slope-independent chemical weathering dominates denudation. In contrast, in arid climates with rapid rock uplift rates, carbonate rocks form steep mountains that facilitate rapid, slope-dependent mechanical erosion required to compensate for inefficient chemical weathering and runoff loss to groundwater systems. This result suggests that carbonates represent an end member for interactions between climate, tectonics, and lithology. 
    more » « less