Enhanced electrochemical performance of 3‐D microporous nickel/nickel oxide nanoflakes for application in supercapacitors
- Award ID(s):
- 1827745
- PAR ID:
- 10420037
- Date Published:
- Journal Name:
- Nano Select
- Volume:
- 4
- Issue:
- 2
- ISSN:
- 2688-4011
- Page Range / eLocation ID:
- 145 to 159
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Nickel stable isotopes (δ60Ni) provide insight to Ni biogeochemistry in the modern and past oceans. Here, we present the first Pacific Ocean high‐resolution dissolved Ni concentration and δ60Ni data, from the US GEOTRACES GP15 cruise. As in other ocean basins, increases in δ60Ni toward the surface ocean are observed across the entire transect, reflecting preferential biological uptake of light Ni isotopes, however the observed magnitude of fractionation is larger in the tropical Pacific than the North Pacific Subtropical Gyre. Such surface ocean fractionation by phytoplankton should accumulate isotopically lighter Ni in the deep Pacific, yet we find that North Pacific deep ocean δ60Ni is similar to previously reported values from the deep Atlantic. Finally, we find that seawater dissolved δ60Ni in regions with hydrothermal input can be either higher or lower than background deep ocean δ60Ni, depending on vent geochemistry and proximity.more » « less
-
A general, highly selective method for decarbonylative thioetherification of aryl thioesters by C–S cleavage is reported. These reactions are promoted by a commercially-available, userfriendly, inexpensive, air- and moisture-stable nickel precatalyst. The process occurs with broad functional group tolerance, including free anilines, cyanides, ketones, halides and aryl esters, to efficiently generate thioethers using ubiquitous carboxylic acids as ultimate cross-coupling precursors (cf. conventional aryl halides or pseudohalides). Selectivity studies and site-selective orthogonal cross-coupling/thioetherification are described. This thioester activation/coupling has been highlighted in the expedient synthesis of biorelevant drug analogues. In light of the synthetic utility of thioethers and Ni(II) precatalysts, we anticipate that this user-friendly method will be of broad interest.more » « less
An official website of the United States government

