skip to main content


Title: Influence of doping and thickness on domain avalanches in lead zirconate titanate thin films
In undoped lead zirconate titanate films of 1–2  μm thick, domain walls move in clusters with a correlation length of approximately 0.5–2  μm. Band excitation piezoresponse force microscopy mapping of the piezoelectric nonlinearity revealed that niobium (Nb) doping increases the average concentration or mobility of domain walls without changing the cluster area of correlated domain wall motion. In contrast, manganese (Mn) doping reduces the contribution of mobile domain walls to the dielectric and piezoelectric responses without changing the cluster area for correlated motion. In both Nb and Mn doped films, the cluster area increases and the cluster density drops as the film thickness increases from 250 to 1250 nm. This is evident in spatial maps generated from the analysis of irreversible to reversible ratios of the Rayleigh coefficients.  more » « less
Award ID(s):
2025439
NSF-PAR ID:
10420049
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
122
Issue:
13
ISSN:
0003-6951
Page Range / eLocation ID:
132906
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lead zirconate titanate (PZT) films with high Nb concentrations (6–13 mol%) were grown by chemical solution deposition. In concentrations up to 8 mol% Nb, the films self-compensate the stoichiometry; single phase films were grown from precursor solutions with 10 mol% PbO excess. Higher Nb concentrations induced multi-phase films unless the amount of excess PbO in the precursor solution was reduced. Phase pure perovskite films were grown with 13 mol% excess Nb with the addition of 6 mol% PbO. Charge compensation was achieved by creating lead vacancies when decreasing excess PbO level; using Kroger-Vink notation, NbTi• are ionically compensated by VPb″ to maintain charge neutrality in heavily Nb-doped PZT films. With Nb doping, films showed suppressed {100} orientation, the Curie temperature decreased, and the maximum in the relative permittivity at the phase transition broadened. The dielectric and piezoelectric properties were dramatically degraded due to increased quantity of the non-polar pyrochlore phase in multi-phase films; εr reduced from 1360 ± 8 to 940 ± 6, and the remanent d33,f value decreased from 112 to 42 pm/V when increasing the Nb concentration from 6 to 13 mol%. Property deterioration was corrected by decreasing the PbO level to 6 mol%; phase pure perovskite films were attained. εr and the remanent d33,f increased to 1330 ± 9 and 106 ± 4 pm/V, respectively. There was no discernable difference in the level of self-imprint in phase pure PZT films with Nb doping. However, the magnitude of the internal field after thermal poling at 150 °C increased significantly; the level of imprint was 30 kV/cm and 11.5 kV/cm in phase pure 6 mol% and 13 mol% Nb-doped films, respectively. The absence of mobile VO••, coupled with the immobile VPb″ in 13 mol% Nb-doped PZT films, leads to lower internal field formation upon thermal poling. For 6 mol% Nb-doped PZT films, the internal field formation was primarily governed by (1) the alignment of (VPb″−VO•• )x and (2) the injection and subsequent electron trapping by Ti4+. For 13 mol% Nb-doped PZT films, hole migration between VPb″ controlled internal field formation upon thermal poling. 
    more » « less
  2. Uniformly acceptor doped Pb(Zr 0.48 Ti 0.52 )O 3 (PZT) films with 2 mol. % Mg or Fe prepared by chemical solution deposition exhibited decreased dielectric constants and remanent polarizations relative to undoped PZT. For highly accelerated lifetime testing (HALT) at 200 °C and an electric field of 300 kV/cm in the field up direction, the HALT lifetimes (t 50 ) for undoped, Mg-doped, and Fe-doped PZT films were shortened from 2.81 ± 0.1 to 0.21 ± 0.1 and 0.54 ± 0.04 h, respectively. Through thermally stimulated depolarization current measurement, significant [Formula: see text] electromigration was found in homogeneously Mg-doped PZT thin films, a major factor in their short HALT lifetime. Because the concentration of oxygen vacancies increases with uniform acceptor doping, the lifetime decreases. In contrast, when a thin layer of Mg-doped or Fe-doped PZT was deposited on undoped PZT or Nb-doped PZT (PNZT), the HALT lifetimes were longer than those of pure PZT or PNZT films. This confirms prior work on PNZT films with a Mn-doped top layer, demonstrating that the HALT lifetime increases for composite films when a layer with multivalent acceptors is present near the negative electrode during HALT. In that case, the compensating electrons are trapped, presumably on the multivalent acceptors, thus increasing the lifetime. 
    more » « less
  3. Abstract

    Ferroelectric films suffer from both aging and degradation under high ac‐field drive conditions due to loss of polarization with time. In this study, the roles of defect chemistry and internal electric fields on the long‐term stability of the properties of piezoelectric films were explored. For this purpose, lead zirconate titanate (PZT) films with a Zr/Ti ratio of 52/48 doped with Mn‐ (PMZT) or Nb‐ (PNZT) were deposited on Pt coated Si substrates by the sol‐gel method. It was demonstrated that the magnitude of the internal field is much higher in PMZT films compared to PNZT films after poling in the temperature range of 25‐200°C under an electric field of −240 kV/cm. The development of the internal field is thermally activated, with activation energies from 0.5 ± 0.06 to 0.8 ± 0.1 eV in Mn doped films and from 0.8 ± 0.1 to 1.2 ± 0.2 eV in Nb doped films. The different activation energies for imprint suggests that the physical mechanism underlying the evolution of the internal field in PMZT and PNZT films differs; the enhanced internal field upon poling is attributed to (a) alignment of oxygen vacancy—acceptor ion defect dipoles (,) in PMZT films, and (b) thermionic injection of electron charges and charge trapping in PNZT films. In either case, the internal field reduces back switching, enhances the remanent piezoelectric properties, and dramatically improves the aging behavior. PMZT films exhibited the greatest enhancement, with reduced high temperature (180°C) aging rates of 2%‐3%/decade due to improved stability of the poled state. In contrast, PNZT films showed significantly larger high temperature aging rates (15.5%/decade) in the piezoelectric coefficient, demonstrating that the fully poled state was not retained with time.

     
    more » « less
  4. null (Ed.)
    Understanding the failure mechanisms of piezoelectric thin films is critical for the commercialization of piezoelectric microelectromechanical systems. This paper describes the failure of 0.6 mu m lead zirconate titanate (PZT) thin films on Si wafers with different in-plane stresses under large electric fields. The films failed by a combination of cracking and thermal breakdown events. It was found that the crack initiation and propagation behavior varied with the stress state of the films. The total stress required for crack initiation was estimated to be near 500 MPa. As expected, cracks propagated perpendicular to the maximum tensile stress direction. Thermal breakdown events and cracks were correlated, suggesting coupling between electrical and mechanical failure. It was also found that films that were released from the underlying substrates were less susceptible to failure by cracking. It was proposed that during electric field loading the released film stacks were able to bow and alleviate some of the stress. Released films may also experience enhanced domain wall motion that increases their fracture toughness. The results indicate that both applied stress and clamping conditions play important roles in the electromechancial failure of piezoelectric thin films. 
    more » « less
  5. Abstract

    Acting like thermal resistances, ferroelectric domain walls can be manipulated to realize dynamic modulation of thermal conductivity (k), which is essential for developing novel phononic circuits. Despite the interest, little attention has been paid to achieving room‐temperature thermal modulation in bulk materials due to challenges in obtaining a high thermal conductivity switching ratio (khigh/klow), particularly in commercially viable materials. Here, room‐temperature thermal modulation in 2.5 mm‐thick Pb(Mg1/3Nb2/3)O3xPbTiO3(PMN–xPT) single crystals is demonstrated. With the use of advanced poling conditions, assisted by the systematic study on composition and orientation dependence of PMN–xPT, a range of thermal conductivity switching ratios with a maximum of ≈1.27 is observed. Simultaneous measurements of piezoelectric coefficient (d33) to characterize the poling state, domain wall density using polarized light microscopy (PLM), and birefringence change using quantitative PLM reveal that compared to the unpoled state, the domain wall density at intermediate poling states (0<d33<d33,max) is lower due to the enlargement in domain size. At optimized poling conditions (d33,max), the domain sizes show increased inhomogeneity that leads to enhancement in the domain wall density. This work highlights the potential of commercially available PMN–xPT single crystals among other relaxor‐ferroelectrics for achieving temperature control in solid‐state devices.

     
    more » « less