skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Time-Limited Toeplitz Operators on Abelian Groups: Applications in Information Theory and Subspace Approximation
Toeplitz operators are fundamental and ubiquitous in signal processing and information theory as models for linear, time-invariant (LTI) systems. Due to the fact that any practical system can access only signals of finite duration, time-limited restrictions of Toeplitz operators are naturally of interest. To provide a unifying treatment of such systems working on different signal domains, we consider time-limited Toeplitz operators on locally compact abelian groups with the aid of the Fourier transform on these groups. In particular, we survey existing results concerning the relationship between the spectrum of a time-limited Toeplitz operator and the spectrum of the corresponding non-time-limited Toeplitz operator. We also develop new results specifically concerning the eigenvalues of time-frequency limiting operators on locally compact abelian groups. Applications of our unifying treatment are discussed in relation to channel capacity and in relation to representation and approximation of signals.  more » « less
Award ID(s):
2203060
PAR ID:
10420064
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Pure and applied functional analysis
Volume:
8
Issue:
2
ISSN:
2189-3756
Page Range / eLocation ID:
775-808
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract In many gauge theories, the existence of particles in every representation of the gauge group (also known as completeness of the spectrum) is equivalent to the absence of one-form global symmetries. However, this relation does not hold, for example, in the gauge theory of non-abelian finite groups. We refine this statement by considering topological operators that are not necessarily associated with any global symmetry. For discrete gauge theory in three spacetime dimensions, we show that completeness of the spectrum is equivalent to the absence of certain Gukov-Witten topological operators. We further extend our analysis to four and higher spacetime dimensions. Since topological operators are natural generalizations of global symmetries, we discuss evidence for their absence in a consistent theory of quantum gravity. 
    more » « less
  2. A bstract It is widely believed that consistent theories of quantum gravity satisfy two basic kinematic constraints: they are free from any global symmetry, and they contain a complete spectrum of gauge charges. For compact, abelian gauge groups, completeness follows from the absence of a 1-form global symmetry. However, this correspondence breaks down for more general gauge groups, where the breaking of the 1-form symmetry is insufficient to guarantee a complete spectrum. We show that the correspondence may be restored by broadening our notion of symmetry to include non-invertible topological operators, and prove that their absence is sufficient to guarantee a complete spectrum for any compact, possibly disconnected gauge group. In addition, we prove an analogous statement regarding the completeness of twist vortices : codimension-2 objects defined by a discrete holonomy around their worldvolume, such as cosmic strings in four dimensions. We discuss how this correspondence is modified in various, more general contexts, including non-compact gauge groups, Higgsing of gauge theories, and the addition of Chern-Simons terms. Finally, we discuss the implications of our results for the Swampland program, as well as the phenomenological implications of the existence of twist strings. 
    more » « less
  3. Effective field theories (EFTs) of heavy particles coupled to the inflaton are rife with operator redundancies, frequently obscured by sensitivity to both boundary terms and field redefinitions. We initiate a systematic study of these redundancies by establishing a minimal operator basis for an archetypal example, the abelian gauge-Higgs-inflaton EFT. Working up to dimension 9, we show that certain low-dimensional operators are entirely redundant and identify new non-redundant operators with potentially interesting cosmological collider signals. Our methods generalize straightforwardly to other EFTs of heavy particles coupled to the inflaton. 
    more » « less
  4. Abstract Harmonic Hilbert spaces on locally compact abelian groups are reproducing kernel Hilbert spaces (RKHSs) of continuous functions constructed by Fourier transform of weighted$$L^2$$ L 2 spaces on the dual group. It is known that for suitably chosen subadditive weights, every such space is a Banach algebra with respect to pointwise multiplication of functions. In this paper, we study RKHSs associated with subconvolutive functions on the dual group. Sufficient conditions are established for these spaces to be symmetric Banach$$^*$$ -algebras with respect to pointwise multiplication and complex conjugation of functions (here referred to as RKHAs). In addition, we study aspects of the spectra and state spaces of RKHAs. Sufficient conditions are established for an RKHA on a compact abelian groupGto have the same spectrum as the$$C^*$$ C -algebra of continuous functions onG. We also consider one-parameter families of RKHSs associated with semigroups of self-adjoint Markov operators on$$L^2(G)$$ L 2 ( G ) , and show that in this setting subconvolutivity is a necessary and sufficient condition for these spaces to have RKHA structure. Finally, we establish embedding relationships between RKHAs and a class of Fourier–Wermer algebras that includes spaces of dominating mixed smoothness used in high-dimensional function approximation. 
    more » « less
  5. Abstract Beginning with the work of Landau, Pollak and Slepian in the 1960s on time‐band limiting, commuting pairs of integral and differential operators have played a key role in signal processing, random matrix theory, and integrable systems. Previously, such pairs were constructed by ad hoc methods, which essentially worked because a commuting operator of low order could be found by a direct calculation. We describe a general approach to these problems that proves that every pointWof Wilson's infinite dimensional adelic Grassmannian gives rise to an integral operator , acting on for a contour , which reflects a differential operator with rational coefficients in the sense that on a dense subset of . By using analytic methods and methods from integrable systems, we show that the reflected differential operator can be constructed from the Fourier algebra of the associated bispectral function . The exact size of this algebra with respect to a bifiltration is in turn determined using algebro‐geometric methods. Intrinsic properties of four involutions of the adelic Grassmannian naturally lead us to consider the reflecting property above in place of plain commutativity. Furthermore, we prove that the time‐band limited operators of the generalized Laplace transforms with kernels given by the rank one bispectral functions always reflect a differential operator. A 90° rotation argument is used to prove that the time‐band limited operators of the generalized Fourier transforms with kernels admit a commuting differential operator. These methods produce vast collections of integral operators with prolate‐spheroidal properties, associated to the wave functions of all rational solutions of the KP hierarchy vanishing at infinity, introduced by Krichever in the late 1970s. 
    more » « less