Chalcogenide perovskites have recently attracted significant attention for renewable energy applications due to their predicted combination of air, moisture, and thermal stability, which has been experimentally validated, along with their excellent optoelectronic properties, which are still under experimental investigation. While historically requiring high synthesis temperatures, some solution-processed routes have recently emerged for synthesizing chalcogenide perovskites, such as BaZrS3 and BaHfS3, at temperatures below 600 °C. This study discusses several experimental challenges associated with the moderate-temperature synthesis of solution-deposited chalcogenide perovskites. Firstly, we identify Ruddlesden–Popper (RP) phases as thermodynamically stable competing secondary phases in perovskite synthesis. High sulfur pressures favor the formation of BaZrS3 or BaHfS3, whereas lower sulfur pressures result in a mixture of perovskite and RP phases. Additionally, we briefly discuss the mechanism of moderate-temperature synthesis of chalcogenide perovskites, including some of the morphological and optoelectronic challenges it presents, such as grain overgrowth, secondary phase contamination entrapment, and the presence of mid-band gap emissions. Finally, we address the importance of substrate selection and the potential presence of Ca- and Na-based impurities originating from cation out-diffusion from glass substrates. Addressing these challenges will be crucial as these unique materials continue to be investigated for applications in optoelectronic devices.
more »
« less
A Low-temperature Growth Mechanism for Chalcogenide Perovskites
Chalcogenide perovskites have attracted increasing research attention in recent years due to their promise of unique optoelectronic properties combined with stability. However, the synthesis and processing of these materials has been constrained by the need for high temperatures and/or long reaction times. In this work, we address the open question of a low-temperature growth mechanism for BaZrS3. Ultimately, a liquid-assisted growth mechanism for BaZrS3 using molten BaS3 as a flux is demonstrated at temperatures ≥540 °C in as little as 5 min. The role of Zr-precursor reactivity and S(g.) on the growth mechanism and the formation of Ba3Zr2S7 is discussed, in addition to the purification of resulting products using a straightforward H2O wash. The extension of this growth mechanism to other Ba-based chalcogenides is shown, including BaHfS3, BaNbS3, and BaTiS3. In addition, an alternative vapor-transport growth mechanism is presented using S2Cl2 for the growth of BaZrS3 at temperatures as low as 500 °C in at least 3 h. These results demonstrate the feasibility of scalable processing for the formation of chalcogenide perovskite thin-films. (DOI: 10.1021/acs.chemmater.3c00494)
more »
« less
- PAR ID:
- 10420169
- Date Published:
- Journal Name:
- Chemistry of materials
- ISSN:
- 1520-5002
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chalcogenide perovskites are gaining prominence as earth-abundant and non-toxic solar absorber materials, crystallizing in a distorted perovskite structure. Among these, BaZrS3 has attracted the most attention due to its optimal bandgap and its ability to be synthesized at relatively low temperatures. BaZrS3 exhibits a high light absorption coefficient, excellent stability under exposure to air, moisture, and heat, and is composed of earth-abundant elements. These properties collectively position BaZrS3 as a promising candidate for a wide range of applications, although traditional high-temperature synthesis has primarily been a significant challenge. In this review, we provide a critical discussion of the various synthesis methods employed to fabricate BaZrS3, including solid-state synthesis, nanoparticle synthesis, and vacuum-based as well as solution-based approaches to synthesize thin films. We also comprehensively examine the experimentally measured and theoretically calculated optical, optoelectronic, electronic, and defect properties of BaZrS3. Furthermore, this review highlights the functional devices based on BaZrS3, showcasing applications spanning photovoltaics, photodetection, thermoelectrics, photoelectrochemical water splitting, piezoelectricity, and spintronics. Lastly, we propose a future roadmap to maximize the potential of this material. Additionally, this review extends its focus to BaHfS3 and BaTiS3, discussing their synthesis methods, properties, and explored applications, thereby offering a comparative perspective on this emerging family of chalcogenide perovskites.more » « less
-
The chalcogenide perovskite family has been steadily gaining increasing attention from the research community due to its optoelectronic properties and potential for diverse applications. While BaZrS3 and BaTiS3 have been the most extensively studied, other promising compounds in this family, such as SrxTiS3 (1.05 < x < 1.22), are now being explored for various optical, optoelectronic, and energy storage applications. However, challenges remain in achieving the low-temperature synthesis of SrxTiS3. In this study, we report, for the first time, the synthesis of SrxTiS3 nanocrystals at temperatures below 400 °C. The synthesized nanocrystals exhibit a rod-like morphology. Additionally, we have developed solution-processing routes to synthesize phase-pure SrxTiS3 thin films, marking the first reported instance of such films, at temperatures below 600 °C. We also demonstrate the solid-state synthesis of SrxTiS3 powder below 600 °C. Our work paves the way for new and exciting application avenues for SrxTiS3.more » « less
-
Chalcogenide perovskites are promising semiconductor materials with attractive optoelectronic properties and appreciable stability, making them enticing candidates for photovoltaics and related electronic applications. Traditional synthesis methods for these materials have long suffered from high‐temperature requirements of 800–1000 °C. However, the recently developed solution processing route provides a way to circumvent this. By utilizing barium thiolate and ZrH2, this method is capable of synthesizing BaZrS3perovskite at modest temperatures (500–600 °C), generating crystalline domains on the order of hundreds of nanometers in size. Herein, a systematic study of this solution processing route is done to gain a mechanistic understanding of the process and to supplement the development of device quality fabrication methodologies. A barium polysulfide liquid flux is identified as playing a key role in the rapid synthesis of large‐grain BaZrS3perovskite at modest temperatures. Additionally, this mechanism is successfully extended to the related BaHfS3perovskite. The reported findings identify viable precursors, key temperature regimes, and reaction conditions that are likely to enable the large‐grain chalcogenide perovskite growth, essential toward the formation of device‐quality thin films.more » « less
-
Chalcogenide perovskites represent a prominent class of emerging semiconductor materials for photovoltaic applications, boasting excellent optoelectronic properties, appropriate bandgaps, and remarkable stability. Among these, BaZrS3 is one of the most extensively studied chalcogenide perovskites. However, its synthesis typically demands high temperatures exceeding 900 °C. While recent advancements in solution-processing techniques have mitigated this challenge, they often rely on costly and difficult-to-find organometallic precursors. Furthermore, there is a notable gap in research regarding the influence of the Ba/Zr ratio on phase purity. Thus, our study explores solid-state reactions to investigate the impact of metal ratios and sulfur pressure on the phase purity of BaZrS3. Expanding upon this investigation, we aim to leverage cost-effective metal halide and metal sulfide precursors for the solution-based synthesis of BaMS3 (M=Ti, Zr, Hf) compounds. Additionally, we have devised a bilayer stacking approach to address the halide affinity of alkaline earth metals. Moreover, we introduce a novel solution-chemistry capable of dissolving alkaline earth metal sulfides, enabling the synthesis of BaMS3 compounds from metal sulfide precursors. While the BaSx liquid flux has shown promise, we identify the selenium liquid flux as an alternative method for synthesizing BaMS3 compounds.more » « less
An official website of the United States government

