Backhaul-Aware Drone Base Station Placement and Resource Management for FSO-Based Drone-Assisted Mobile Networks
- Award ID(s):
- 1757207
- PAR ID:
- 10420214
- Date Published:
- Journal Name:
- IEEE Transactions on Network Science and Engineering
- Volume:
- 10
- Issue:
- 3
- ISSN:
- 2334-329X
- Page Range / eLocation ID:
- 1659 to 1668
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Although consumer drones have been used in many attacks, besides specific methods such as jamming, very little research has been conducted on systematical methods to counter these drones. In this paper, we develop generic methods to compromise drone position control algorithms in order to make malicious drones deviate from their targets. Taking advantage of existing methods to remotely manipulate drone sensors through cyber or physical attacks (e.g., [1], [2]), we exploited the weaknesses of position estimation and autopilot controller algorithms on consumer drones in the proposed attacks. For compromising drone position control, we first designed two state estimation attacks: a maximum False Data Injection (FDI) attack and a generic FDI attack that compromised the Kalman-Filter-based position estimation (arguably the most popular method). Furthermore, based on the above attacks, we proposed two attacks on autopilot-based navigation, to compromise the actual position of a malicious drone. To the best of our knowledge, this is the first piece of work in this area. Our analysis and simulation results show that the proposed attacks can significantly affect the position estimation and the actual positions of drones. We also proposed potential countermeasures to address these attacks.more » « less
-
The use of unmanned aerial vehicles (UAVs) or drones, has significantly increased over the past few years. There is a growing demand in the drone industry, creating new workforce opportunities such as package delivery, search and rescue, real estate, transportation, agriculture, infrastructure inspection, and many others, signifying the importance of effective and efficient control techniques. We propose a scheme for controlling a drone through gaze extracted from eye-trackers, enabling an operator to navigate through a series of waypoints. Then we demonstrate and test the utility of our approach through a pilot study against traditional controls. Our results indicate gaze as a promising control technique for navigating drones revealing novel research avenues.more » « less
-
Autonomous robotic vehicles (i.e., drones) are potentially transformative for search and rescue (SAR). This paper works toward wearable interfaces, through which humans team with multiple drones. We introduce the Virtual Drone Search Game as a first step in creating a mixed reality simulation for humans to practice drone teaming and SAR techniques. Our goals are to (1) evaluate input modalities for the drones, derived from an iterative narrowing of the design space, (2) improve our mixed reality system for designing input modalities and training operators, and (3) collect data on how participants socially experience the virtual drones with which they work. In our study, 17 participants played the game with two input modalities (Gesture condition, Tap condition) in counterbalanced order. Results indicated that participants performed best with the Gesture condition. Participants found the multiple controls challenging, and future studies might include more training of the devices and game. Participants felt like a team with the drones and found them moderately agentic. In our future work, we will extend this testing to a more externally valid mixed reality game.more » « less
An official website of the United States government

