We consider hyper-differential sensitivity analysis (HDSA) of nonlinear Bayesian inverse problems governed by partialdifferential equations (PDEs) with infinite-dimensional parameters. In previous works, HDSA has been used to assessthe sensitivity of the solution of deterministic inverse problems to additional model uncertainties and also different types of measurement data. In the present work, we extend HDSA to the class of Bayesian inverse problems governed by PDEs. The focus is on assessing the sensitivity of certain key quantities derived from the posterior distribution. Specifically, we focus on analyzing the sensitivity of the MAP point and the Bayes risk and make full use of the information embedded in the Bayesian inverse problem. After establishing our mathematical framework for HDSA of Bayesian inverse problems, we present a detailed computational approach for computing the proposed HDSA indices. We examine the effectiveness of the proposed approach on an inverse problem governed by a PDE modeling heat conduction.
more »
« less
Hyper-differential sensitivity analysis for inverse problems constrained by partial differential equations
Abstract High fidelity models used in many science and engineering applications couple multiple physical states and parameters. Inverse problems arise when a model parameter cannot be determined directly, but rather is estimated using (typically sparse and noisy) measurements of the states. The data is usually not sufficient to simultaneously inform all of the parameters. Consequently, the governing model typically contains parameters which are uncertain but must be specified for a complete model characterization necessary to invert for the parameters of interest. We refer to the combination of the additional model parameters (those which are not inverted for) and the measured data states as the ‘complementary parameters’. We seek to quantify the relative importance of these complementary parameters to the solution of the inverse problem. To address this, we present a framework based on hyper-differential sensitivity analysis (HDSA). HDSA computes the derivative of the solution of an inverse problem with respect to complementary parameters. We present a mathematical framework for HDSA in large-scale PDE-constrained inverse problems and show how HDSA can be interpreted to give insight about the inverse problem. We demonstrate the effectiveness of the method on an inverse problem by estimating a permeability field, using pressure and concentration measurements, in a porous medium flow application with uncertainty in the boundary conditions, source injection, and diffusion coefficient.
more »
« less
- Award ID(s):
- 1745654
- PAR ID:
- 10420395
- Date Published:
- Journal Name:
- Inverse Problems
- Volume:
- 36
- Issue:
- 12
- ISSN:
- 0266-5611
- Page Range / eLocation ID:
- 125001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bayesian inference provides a systematic framework for integration of data with mathematical models to quantify the uncertainty in the solution of the inverse problem. However, the solution of Bayesian inverse problems governed by complex forward models described by partial differential equations (PDEs) remains prohibitive with black-box Markov chain Monte Carlo (MCMC) methods. We present hIPPYlib-MUQ, an extensible and scalable software framework that contains implementations of state-of-the art algorithms aimed to overcome the challenges of high-dimensional, PDE-constrained Bayesian inverse problems. These algorithms accelerate MCMC sampling by exploiting the geometry and intrinsic low-dimensionality of parameter space via derivative information and low rank approximation. The software integrates two complementary open-source software packages, hIPPYlib and MUQ. hIPPYlib solves PDE-constrained inverse problems using automatically-generated adjoint-based derivatives, but it lacks full Bayesian capabilities. MUQ provides a spectrum of powerful Bayesian inversion models and algorithms, but expects forward models to come equipped with gradients and Hessians to permit large-scale solution. By combining these two complementary libraries, we created a robust, scalable, and efficient software framework that realizes the benefits of each and allows us to tackle complex large-scale Bayesian inverse problems across a broad spectrum of scientific and engineering disciplines. To illustrate the capabilities of hIPPYlib-MUQ, we present a comparison of a number of MCMC methods available in the integrated software on several high-dimensional Bayesian inverse problems. These include problems characterized by both linear and nonlinear PDEs, various noise models, and different parameter dimensions. The results demonstrate that large (∼ 50×) speedups over conventional black box and gradient-based MCMC algorithms can be obtained by exploiting Hessian information (from the log-posterior), underscoring the power of the integrated hIPPYlib-MUQ framework.more » « less
-
Inverse problems involving time-fractional differential equations have become increasingly important for modeling systems with memory-dependent dynamics, particularly in biotransport and viscoelastic materials. Despite their potential, these problems remain challenging due to issues of stability, non-uniqueness, and limited data availability. Recent advancements in Physics-Informed Neural Networks (PINNs) offer a data-efficient framework for solving such inverse problems, yet most implementations are restricted to integer-order derivatives. In this work, we develop a PINN-based framework tailored for inverse problems involving time-fractional derivatives. We consider two representative applications: anomalous diffusion and fractional viscoelasticity. Using both synthetic and experimental datasets, we infer key physical parameters including the generalized diffusion coefficient and the fractional derivative order in the diffusion model and the relaxation parameters in a fractional Maxwell model. Our approach incorporates a customized residual loss function scaled by the standard deviation of observed data to enhance robustness. Even under 25% Gaussian noise, our method recovers model parameters with relative errors below 10%. Additionally, the framework accurately predicts relaxation moduli in porcine tissue experiments, achieving similar error margins. These results demonstrate the framework’s effectiveness in learning fractional dynamics from noisy and sparse data, paving the way for broader applications in complex biological and mechanical systems.more » « less
-
In this paper, we consider iterative methods based on sampling for computing solutions to separable nonlinear inverse problems where the entire dataset cannot be accessed or is not available all-at-once. In such scenarios (e.g., when massive amounts of data exceed memory capabilities or when data is being streamed), solving inverse problems, especially nonlinear ones, can be very challenging. We focus on separable nonlinear problems, where the objective function is nonlinear in one (typically small) set of parameters and linear in another (larger) set of parameters. For the linear problem, we describe a limited-memory sampled Tikhonov method, and for the nonlinear problem, we describe an approach to integrate the limited-memory sampled Tikhonov method within a nonlinear optimization framework. The proposed method is computationally efficient in that it only uses available data at any iteration to update both sets of parameters. Numerical experiments applied to massive super-resolution image reconstruction problems show the power of these methods.more » « less
-
Inverse models arise in various environmental applications, ranging from atmospheric modeling to geosciences. Inverse models can often incorporate predictor variables, similar to regression, to help estimate natural processes or parameters of interest from observed data. Although a large set of possible predictor variables may be included in these inverse or regression models, a core challenge is to identify a small number of predictor variables that are most informative of the model, given limited observations. This problem is typically referred to as model selection. A variety of criterion-based approaches are commonly used for model selection, but most follow a two-step process: first, select predictors using some statistical criteria, and second, solve the inverse or regression problem with these predictor variables. The first step typically requires comparing all possible combinations of candidate predictors, which quickly becomes computationally prohibitive, especially for large-scale problems. In this work, we develop a one-step approach for linear inverse modeling, where model selection and the inverse model are performed in tandem. We reformulate the problem so that the selection of a small number of relevant predictor variables is achieved via a sparsity-promoting prior. Then, we describe hybrid iterative projection methods based on flexible Krylov subspace methods for efficient optimization. These approaches are well-suited for large-scale problems with many candidate predictor variables. We evaluate our results against traditional, criteria-based approaches. We also demonstrate the applicability and potential benefits of our approach using examples from atmospheric inverse modeling based on NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite.more » « less
An official website of the United States government

