The formulation of Bayesian inverse problems involves choosing prior distributions; choices that seem equally reason-able may lead to significantly different conclusions. We develop a computational approach to understand the impact of the hyperparameters defining the prior on the posterior statistics of the quantities of interest. Our approach relies on global sensitivity analysis (GSA) of Bayesian inverse problems with respect to the prior hyperparameters. This, however, is a challenging problem-a naive double loop sampling approach would require running a prohibitive number of Markov chain Monte Carlo (MCMC) sampling procedures. The present work takes a foundational step in making such a sensitivity analysis practical by combining efficient surrogate models and a tailored importance sampling approach. In particular, we can perform accurate GSA of posterior statistics of quantities of interest with respect to prior hyperparameters without the need to repeat MCMC runs. We demonstrate the effectiveness of the approach on a simple Bayesian linear inverse problem and a nonlinear inverse problem governed by an epidemiological model.
more »
« less
HYPER-DIFFERENTIAL SENSITIVITY ANALYSIS FOR NONLINEAR BAYESIAN INVERSE PROBLEMS
We consider hyper-differential sensitivity analysis (HDSA) of nonlinear Bayesian inverse problems governed by partialdifferential equations (PDEs) with infinite-dimensional parameters. In previous works, HDSA has been used to assessthe sensitivity of the solution of deterministic inverse problems to additional model uncertainties and also different types of measurement data. In the present work, we extend HDSA to the class of Bayesian inverse problems governed by PDEs. The focus is on assessing the sensitivity of certain key quantities derived from the posterior distribution. Specifically, we focus on analyzing the sensitivity of the MAP point and the Bayes risk and make full use of the information embedded in the Bayesian inverse problem. After establishing our mathematical framework for HDSA of Bayesian inverse problems, we present a detailed computational approach for computing the proposed HDSA indices. We examine the effectiveness of the proposed approach on an inverse problem governed by a PDE modeling heat conduction.
more »
« less
- PAR ID:
- 10520974
- Publisher / Repository:
- Begell House, Inc.
- Date Published:
- Journal Name:
- International Journal for Uncertainty Quantification
- Volume:
- 14
- Issue:
- 2
- ISSN:
- 2152-5080
- Page Range / eLocation ID:
- 1 to 20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bayesian inference provides a systematic framework for integration of data with mathematical models to quantify the uncertainty in the solution of the inverse problem. However, the solution of Bayesian inverse problems governed by complex forward models described by partial differential equations (PDEs) remains prohibitive with black-box Markov chain Monte Carlo (MCMC) methods. We present hIPPYlib-MUQ, an extensible and scalable software framework that contains implementations of state-of-the art algorithms aimed to overcome the challenges of high-dimensional, PDE-constrained Bayesian inverse problems. These algorithms accelerate MCMC sampling by exploiting the geometry and intrinsic low-dimensionality of parameter space via derivative information and low rank approximation. The software integrates two complementary open-source software packages, hIPPYlib and MUQ. hIPPYlib solves PDE-constrained inverse problems using automatically-generated adjoint-based derivatives, but it lacks full Bayesian capabilities. MUQ provides a spectrum of powerful Bayesian inversion models and algorithms, but expects forward models to come equipped with gradients and Hessians to permit large-scale solution. By combining these two complementary libraries, we created a robust, scalable, and efficient software framework that realizes the benefits of each and allows us to tackle complex large-scale Bayesian inverse problems across a broad spectrum of scientific and engineering disciplines. To illustrate the capabilities of hIPPYlib-MUQ, we present a comparison of a number of MCMC methods available in the integrated software on several high-dimensional Bayesian inverse problems. These include problems characterized by both linear and nonlinear PDEs, various noise models, and different parameter dimensions. The results demonstrate that large (∼ 50×) speedups over conventional black box and gradient-based MCMC algorithms can be obtained by exploiting Hessian information (from the log-posterior), underscoring the power of the integrated hIPPYlib-MUQ framework.more » « less
-
Abstract Obtaining lightweight and accurate approximations of discretized objective functional Hessians in inverse problems governed by partial differential equations (PDEs) is essential to make both deterministic and Bayesian statistical large-scale inverse problems computationally tractable. The cubic computational complexity of dense linear algebraic tasks, such as Cholesky factorization, that provide a means to sample Gaussian distributions and determine solutions of Newton linear systems is a computational bottleneck at large-scale. These tasks can be reduced to log-linear complexity by utilizing hierarchical off-diagonal low-rank (HODLR) matrix approximations. In this work, we show that a class of Hessians that arise from inverse problems governed by PDEs are well approximated by the HODLR matrix format. In particular, we study inverse problems governed by PDEs that model the instantaneous viscous flow of ice sheets. In these problems, we seek a spatially distributed basal sliding parameter field such that the flow predicted by the ice sheet model is consistent with ice sheet surface velocity observations. We demonstrate the use of HODLR Hessian approximation to efficiently sample the Laplace approximation of the posterior distribution with covariance further approximated by HODLR matrix compression. Computational studies are performed which illustrate ice sheet problem regimes for which the Gauss–Newton data-misfit Hessian is more efficiently approximated by the HODLR matrix format than the low-rank (LR) format. We then demonstrate that HODLR approximations can be favorable, when compared to global LR approximations, for large-scale problems by studying the data-misfit Hessian associated with inverse problems governed by the first-order Stokes flow model on the Humboldt glacier and Greenland ice sheet.more » « less
-
Abstract We consider the simulation of Bayesian statistical inverse problems governed by large-scale linear and nonlinear partial differential equations (PDEs). Markov chain Monte Carlo (MCMC) algorithms are standard techniques to solve such problems. However, MCMC techniques are computationally challenging as they require a prohibitive number of forward PDE solves. The goal of this paper is to introduce a fractional deep neural network (fDNN) based approach for the forward solves within an MCMC routine. Moreover, we discuss some approximation error estimates. We illustrate the efficiency of fDNN on inverse problems governed by nonlinear elliptic PDEs and the unsteady Navier–Stokes equations. In the former case, two examples are discussed, respectively depending on two and 100 parameters, with significant observed savings. The unsteady Navier–Stokes example illustrates that fDNN can outperform existing DNNs, doing a better job of capturing essential features such as vortex shedding.more » « less
-
null (Ed.)We present an extensible software framework, hIPPYlib, for solution of large-scale deterministic and Bayesian inverse problems governed by partial differential equations (PDEs) with (possibly) infinite-dimensional parameter fields (which are high-dimensional after discretization). hIPPYlib overcomes the prohibitively expensive nature of Bayesian inversion for this class of problems by implementing state-of-the-art scalable algorithms for PDE-based inverse problems that exploit the structure of the underlying operators, notably the Hessian of the log-posterior. The key property of the algorithms implemented in hIPPYlib is that the solution of the inverse problem is computed at a cost, measured in linearized forward PDE solves, that is independent of the parameter dimension. The mean of the posterior is approximated by the MAP point, which is found by minimizing the negative log-posterior with an inexact matrix-free Newton-CG method. The posterior covariance is approximated by the inverse of the Hessian of the negative log posterior evaluated at the MAP point. The construction of the posterior covariance is made tractable by invoking a low-rank approximation of the Hessian of the log-likelihood. Scalable tools for sample generation are also discussed. hIPPYlib makes all of these advanced algorithms easily accessible to domain scientists and provides an environment that expedites the development of new algorithms.more » « less
An official website of the United States government

