Spiking Neural Networks (SNNs) can be implemented with power-efficient digital as well as analog circuitry. However, in Resistive RAM (RRAM) based SNN accelerators, synapse weights programmed into the crossbar can differ from their ideal values due to defects and programming errors, degrading inference accuracy. In addition, circuit nonidealities within analog spiking neurons that alter the neuron spiking rate (modeled by variations in neuron firing threshold) can degrade SNN inference accuracy when the value of inference time steps (ITSteps) of SNN is set to a critical minimum that maximizes network throughput. We first develop a recursive linearized check to detect synapse weight errors with high sensitivity. This triggers a correction methodology which sets out-of-range synapse values to zero. For correcting the effects of firing threshold variations, we develop a test methodology that calibrates the extent of such variations. This is then used to proportionally increase inference time steps during inference for chips with higher variation. Experiments on a variety of SNNs prove the viability of the proposed resilience methods.
more »
« less
SCANN: Side Channel Analysis of Spiking Neural Networks
Spiking neural networks (SNNs) are quickly gaining traction as a viable alternative to deep neural networks (DNNs). Compared to DNNs, SNNs are computationally more powerful and energy efficient. The design metrics (synaptic weights, membrane threshold, etc.) chosen for such SNN architectures are often proprietary and constitute confidential intellectual property (IP). Our study indicates that SNN architectures implemented using conventional analog neurons are susceptible to side channel attack (SCA). Unlike the conventional SCAs that are aimed to leak private keys from cryptographic implementations, SCANN (SCA̲ of spiking n̲eural n̲etworks) can reveal the sensitive IP implemented within the SNN through the power side channel. We demonstrate eight unique SCANN attacks by taking a common analog neuron (axon hillock neuron) as the test case. We chose this particular model since it is biologically plausible and is hence a good fit for SNNs. Simulation results indicate that different synaptic weights, neurons/layer, neuron membrane thresholds, and neuron capacitor sizes (which are the building blocks of SNN) yield distinct power and spike timing signatures, making them vulnerable to SCA. We show that an adversary can use templates (using foundry-calibrated simulations or fabricating known design parameters in test chips) and analysis to identify the specifications of the implemented SNN.
more »
« less
- PAR ID:
- 10420460
- Date Published:
- Journal Name:
- Cryptography
- Volume:
- 7
- Issue:
- 2
- ISSN:
- 2410-387X
- Page Range / eLocation ID:
- 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Spiking Neural Networks (SNN) are fast emerging as an alternative option to Deep Neural Networks (DNN). They are computationally more powerful and provide higher energy-efficiency than DNNs. While exciting at first glance, SNNs contain security-sensitive assets (e.g., neuron threshold voltage) and vulnerabilities (e.g., sensitivity of classification accuracy to neuron threshold voltage change) that can be exploited by the adversaries. We explore global fault injection attacks using external power supply and laser-induced local power glitches on SNN designed using common analog neurons to corrupt critical training parameters such as spike amplitude and neuron’s membrane threshold potential. We also analyze the impact of power-based attacks on the SNN for digit classification task and observe a worst-case classification accuracy degradation of −85.65%. We explore the impact of various design parameters of SNN (e.g., learning rate, spike trace decay constant, and number of neurons) and identify design choices for robust implementation of SNN. We recover classification accuracy degradation by 30–47% for a subset of power-based attacks by modifying SNN training parameters such as learning rate, trace decay constant, and neurons per layer. We also propose hardware-level defenses, e.g., a robust current driver design that is immune to power-oriented attacks, improved circuit sizing of neuron components to reduce/recover the adversarial accuracy degradation at the cost of negligible area, and 25% power overhead. We also propose a dummy neuron-based detection of voltage fault injection at ∼1% power and area overhead each.more » « less
-
Spiking neural networks (SNNs) have received increasing attention due to their high biological plausibility and energy efficiency. The binary spike-based information propagation enables efficient sparse computation in event-based and static computer vision applications. However, the weight precision and especially the membrane potential precision remain as high-precision values (e.g., 32 bits) in state-of-the-art SNN algorithms. Each neuron in an SNN stores the membrane potential over time and typically updates its value in every time step. Such frequent read/write operations of high-precision membrane potential incur storage and memory access overhead in SNNs, which undermines the SNNs' compatibility with resource-constrained hardware. To resolve this inefficiency, prior works have explored the time step reduction and low-precision representation of membrane potential at a limited scale and reported significant accuracy drops. Furthermore, while recent advances in on-device AI present pruning and quantization optimization with different architectures and datasets, simultaneous pruning with quantization is highly under-explored in SNNs. In this work, we present SpQuant-SNN, a fully-quantized spiking neural network with ultra-low precision weights, membrane potential, and high spatial-channel sparsity, enabling the end-to-end low precision with significantly reduced operations on SNN. First, we propose an integer-only quantization scheme for the membrane potential with a stacked surrogate gradient function, a simple-yet-effective method that enables the smooth learning process of quantized SNN training. Second, we implement spatial-channel pruning with membrane potential prior, toward reducing the layer-wise computational complexity, and floating-point operations (FLOPs) in SNNs. Finally, to further improve the accuracy of low-precision and sparse SNN, we propose a self-adaptive learnable potential threshold for SNN training. Equipped with high biological adaptiveness, minimal computations, and memory utilization, SpQuant-SNN achieves state-of-the-art performance across multiple SNN models for both event-based and static image datasets, including both image classification and object detection tasks. The proposed SpQuant-SNN achieved up to 13× memory reduction and >4.7× FLOPs reduction with ~1.8% accuracy degradation for both classification and object detection tasks, compared to the SOTA baseline.more » « less
-
null (Ed.)Brain-inspired cognitive computing has so far followed two major approaches - one uses multi-layered artificial neural networks (ANNs) to perform pattern-recognition-related tasks, whereas the other uses spiking neural networks (SNNs) to emulate biological neurons in an attempt to be as efficient and fault-tolerant as the brain. While there has been considerable progress in the former area due to a combination of effective training algorithms and acceleration platforms, the latter is still in its infancy due to the lack of both. SNNs have a distinct advantage over their ANN counterparts in that they are capable of operating in an event-driven manner, thus consuming very low power. Several recent efforts have proposed various SNN hardware design alternatives, however, these designs still incur considerable energy overheads.In this context, this paper proposes a comprehensive design spanning across the device, circuit, architecture and algorithm levels to build an ultra low-power architecture for SNN and ANN inference. For this, we use spintronics-based magnetic tunnel junction (MTJ) devices that have been shown to function as both neuro-synaptic crossbars as well as thresholding neurons and can operate at ultra low voltage and current levels. Using this MTJ-based neuron model and synaptic connections, we design a low power chip that has the flexibility to be deployed for inference of SNNs, ANNs as well as a combination of SNN-ANN hybrid networks - a distinct advantage compared to prior works. We demonstrate the competitive performance and energy efficiency of the SNNs as well as hybrid models on a suite of workloads. Our evaluations show that the proposed design, NEBULA, is up to 7.9× more energy efficient than a state-of-the-art design, ISAAC, in the ANN mode. In the SNN mode, our design is about 45× more energy-efficient than a contemporary SNN architecture, INXS. Power comparison between NEBULA ANN and SNN modes indicates that the latter is at least 6.25× more power-efficient for the observed benchmarks.more » « less
-
Building accurate and efficient deep neural network (DNN) models for intelligent sensing systems to process data locally is essential. Spiking neural networks (SNNs) have gained significant popularity in recent years because they are more biological-plausible and energy-efficient than DNNs. However, SNNs usually have lower accuracy than DNNs. In this paper, we propose to use SNNs for image sensing applications. Moreover, we introduce the DNN-SNN knowledge distillation algorithm to reduce the accuracy gap between DNNs and SNNs. Our DNNSNN knowledge distillation improves the accuracy of an SNN by transferring knowledge between a DNN and an SNN. To better transfer the knowledge, our algorithm creates two learning paths from a DNN to an SNN. One path is between the output layer and another path is between the intermediate layer. DNNs use real numbers to propagate information between neurons while SNNs use 1-bit spikes. To empower the communication between DNNs and SNNs, we utilize a decoder to decode spikes into real numbers. Also, our algorithm creates a learning path from an SNN to a DNN. This learning path better adapts the DNN to the SNN by allowing the DNN to learn the knowledge from the SNN. Our SNN models are deployed on Loihi, which is a specialized chip for SNN models. On the MNIST dataset, our SNN models trained by the DNN-SNN knowledge distillation achieve better accuracy than the SNN models on GPU trained by other training algorithms with much lower energy consumption per image.more » « less