skip to main content

Title: Fault Injection Attacks in Spiking Neural Networks and Countermeasures
Spiking Neural Networks (SNN) are fast emerging as an alternative option to Deep Neural Networks (DNN). They are computationally more powerful and provide higher energy-efficiency than DNNs. While exciting at first glance, SNNs contain security-sensitive assets (e.g., neuron threshold voltage) and vulnerabilities (e.g., sensitivity of classification accuracy to neuron threshold voltage change) that can be exploited by the adversaries. We explore global fault injection attacks using external power supply and laser-induced local power glitches on SNN designed using common analog neurons to corrupt critical training parameters such as spike amplitude and neuron’s membrane threshold potential. We also analyze the impact of power-based attacks on the SNN for digit classification task and observe a worst-case classification accuracy degradation of −85.65%. We explore the impact of various design parameters of SNN (e.g., learning rate, spike trace decay constant, and number of neurons) and identify design choices for robust implementation of SNN. We recover classification accuracy degradation by 30–47% for a subset of power-based attacks by modifying SNN training parameters such as learning rate, trace decay constant, and neurons per layer. We also propose hardware-level defenses, e.g., a robust current driver design that is immune to power-oriented attacks, improved circuit sizing of neuron more » components to reduce/recover the adversarial accuracy degradation at the cost of negligible area, and 25% power overhead. We also propose a dummy neuron-based detection of voltage fault injection at ∼1% power and area overhead each. « less
Authors:
; ; ; ;
Award ID(s):
1814710 1718474 1821766 1723687
Publication Date:
NSF-PAR ID:
10352468
Journal Name:
Frontiers in Nanotechnology
Volume:
3
ISSN:
2673-3013
Sponsoring Org:
National Science Foundation
More Like this
  1. Brain-inspired cognitive computing has so far followed two major approaches - one uses multi-layered artificial neural networks (ANNs) to perform pattern-recognition-related tasks, whereas the other uses spiking neural networks (SNNs) to emulate biological neurons in an attempt to be as efficient and fault-tolerant as the brain. While there has been considerable progress in the former area due to a combination of effective training algorithms and acceleration platforms, the latter is still in its infancy due to the lack of both. SNNs have a distinct advantage over their ANN counterparts in that they are capable of operating in an event-driven manner, thus consuming very low power. Several recent efforts have proposed various SNN hardware design alternatives, however, these designs still incur considerable energy overheads.In this context, this paper proposes a comprehensive design spanning across the device, circuit, architecture and algorithm levels to build an ultra low-power architecture for SNN and ANN inference. For this, we use spintronics-based magnetic tunnel junction (MTJ) devices that have been shown to function as both neuro-synaptic crossbars as well as thresholding neurons and can operate at ultra low voltage and current levels. Using this MTJ-based neuron model and synaptic connections, we design a low power chipmore »that has the flexibility to be deployed for inference of SNNs, ANNs as well as a combination of SNN-ANN hybrid networks - a distinct advantage compared to prior works. We demonstrate the competitive performance and energy efficiency of the SNNs as well as hybrid models on a suite of workloads. Our evaluations show that the proposed design, NEBULA, is up to 7.9× more energy efficient than a state-of-the-art design, ISAAC, in the ANN mode. In the SNN mode, our design is about 45× more energy-efficient than a contemporary SNN architecture, INXS. Power comparison between NEBULA ANN and SNN modes indicates that the latter is at least 6.25× more power-efficient for the observed benchmarks.« less
  2. Hardware Trojans in Integrated Circuits (ICs), that are inserted as hostile modifications in the design phase and/or the fabrication phase, are a security threat since the semiconductor manufacturing process is increasingly becoming globalized. These Trojans are devised to stay hidden during standard structural and functional testing procedures and only activate under pre-determined rare conditions (e.g., after a large number of clock cycles or the assertion of an improbable net). Once triggered, they can deliver malicious payloads (e.g., denial-of-service and information leakage attacks). Current literature identifies a collection of logic Trojans (both trigger circuits and payloads), but minimal research exists on memory Trojans despite their high feasibility. Emerging Non-Volatile Memories (NVMs), such as Resistive RAM (RRAM), have special properties such as non-volatility and gradual drift in bitcell resistance under a pulsing voltage input that make them prime targets to deploy hardware Trojans. In this paper, we present two delay-based and two voltage-based Trojan triggers using emerging NVM (ENTT) by utilizing RRAM’s resistance drift under a pulsing voltage input. Simulations show that ENTTs can be triggered by reading/writing to a specific memory address N times (N could be 2,500–3,500 or a different value for each ENTT design). Since the RRAM is non-volatile,more »address accesses can be intermittent and therefore stay undetected from system-level techniques that can identify continuous hammering as a possible security threat. We also present three reset techniques to de-activate the triggers. The resulting static/dynamic power overhead and maximum area overhead incurred by the proposed ENTTs are 104.24 μW/0.426 μW and 9.15 μm2, respectively in PTM 65 nm technology. ENTTs are effective against contemporary Trojan detection techniques and system level protocols. We also propose countermeasures to detect ENTT during the test phase and/or prevent fault-injection attacks during deployment.« less
  3. The recently discovered spatial-temporal information processing capability of bio-inspired Spiking neural networks (SNN) has enabled some interesting models and applications. However designing large-scale and high-performance model is yet a challenge due to the lack of robust training algorithms. A bio-plausible SNN model with spatial-temporal property is a complex dynamic system. Synapses and neurons behave as filters capable of preserving temporal information. As such neuron dynamics and filter effects are ignored in existing training algorithms, the SNN downgrades into a memoryless system and loses the ability of temporal signal processing. Furthermore, spike timing plays an important role in information representation, but conventional rate-based spike coding models only consider spike trains statistically, and discard information carried by its temporal structures. To address the above issues, and exploit the temporal dynamics of SNNs, we formulate SNN as a network of infinite impulse response (IIR) filters with neuron nonlinearity. We proposed a training algorithm that is capable to learn spatial-temporal patterns by searching for the optimal synapse filter kernels and weights. The proposed model and training algorithm are applied to construct associative memories and classifiers for synthetic and public datasets including MNIST, NMNIST, DVS 128 etc. Their accuracy outperforms state-of-the-art approaches.

  4. Driven by the expanse of Internet of Things (IoT) and Cyber-Physical Systems (CPS), there is an increasing demand to process streams of temporal data on embedded devices with limited energy and power resources. Among all potential solutions, neuromorphic computing with spiking neural networks (SNN) that mimic the behavior of brain, have recently been placed at the forefront. Encoding information into sparse and distributed spike events enables low-power implementations, and the complex spatial temporal dynamics of synapses and neurons enable SNNs to detect temporal pattern. However, most existing hardware SNN implementations use simplified neuron and synapse models ignoring synapse dynamic, which is critical for temporal pattern detection and other applications that require temporal dynamics. To adopt a more realistic synapse model in neuromorphic platform its significant computation overhead must be addressed. In this work, we propose an FPGA-based SNN with biologically realistic neuron and synapse for temporal information processing. An encoding scheme to convert continuous real-valued information into sparse spike events is presented. The event-driven implementation of synapse dynamic model and its hardware design that is optimized to exploit the sparsity are also presented. Finally, we train the SNN on various temporal pattern-learning tasks and evaluate its performance and efficiency asmore »compared to rate-based models and artificial neural networks on different embedded platforms. Experiments show that our work can achieve 10X speed up and 196X gains in energy efficiency compared with GPU.« less
  5. Precise monitoring of respiratory rate in premature newborn infants is essential to initiating medical interventions as required. Wired technologies can be invasive and obtrusive to the patients. We propose a deep-learning-enabled wearable monitoring system for premature newborn infants, where respiratory cessation is predicted using signals that are collected wirelessly from a non-invasive wearable Bellypatch put on the infant’s body. We propose a five-stage design pipeline involving data collection and labeling, feature scaling, deep learning model selection with hyperparameter tuning, model training and validation, and model testing and deployment. The model used is a 1-D convolutional neural network (1DCNN) architecture with one convolution layer, one pooling layer, and three fully-connected layers, achieving 97.15% classification accuracy. To address the energy limitations of wearable processing, several quantization techniques are explored, and their performance and energy consumption are analyzed for the respiratory classification task. Results demonstrate a reduction of energy footprints and model storage overhead with a considerable degradation of the classification accuracy, meaning that quantization and other model compression techniques are not the best solution for respiratory classification problem on wearable devices. To improve accuracy while reducing the energy consumption, we propose a novel spiking neural network (SNN)-based respiratory classification solution, which canmore »be implemented on event-driven neuromorphic hardware platforms. To this end, we propose an approach to convert the analog operations of our baseline trained 1DCNN to their spiking equivalent. We perform a design-space exploration using the parameters of the converted SNN to generate inference solutions having different accuracy and energy footprints. We select a solution that achieves an accuracy of 93.33% with 18x lower energy compared to the baseline 1DCNN model. Additionally, the proposed SNN solution achieves similar accuracy as the quantized model with a 4× lower energy.« less