skip to main content


Title: Ronchigram Simulation and Aberration Correction Training Using Ronchigram.com
Abstract: This article introduces a training simulator for electron beam alignment using Ronchigrams. The interactive web application, www.ronchigram.com, is an advanced educational tool aimed at making scanning transmission electron microscopy (STEM) more accessible and open. For experienced microscopists, the tool offers on-hand quantification of simulated Ronchigrams and their resolution limits.  more » « less
Award ID(s):
2039380
NSF-PAR ID:
10420540
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Microscopy Today
Volume:
30
Issue:
5
ISSN:
1551-9295
Page Range / eLocation ID:
40 to 43
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microcrystal electron diffraction, commonly referred to as MicroED, has become a powerful tool for high-resolution structure determination. The method makes use of cryogenic transmission electron microscopes to collect electron diffraction data from crystals that are several orders of magnitude smaller than those used by other conventional diffraction techniques. MicroED has been used on a variety of samples including soluble proteins, membrane proteins, small organic molecules, and materials. Here we will review the MicroED method and highlight recent advancements to the methodology, as well as describe applications of MicroED within the fields of structural biology and chemical crystallography. 
    more » « less
  2. Subangstrom resolution has long been limited to aberration-corrected electron microscopy, where it is a powerful tool for understanding the atomic structure and properties of matter. Here, we demonstrate electron ptychography in an uncorrected scanning transmission electron microscope (STEM) with deep subangstrom spatial resolution down to 0.44 angstroms, exceeding the conventional resolution of aberration-corrected tools and rivaling their highest ptychographic resolutions​. Our approach, which we demonstrate on twisted two-dimensional materials in a widely available commercial microscope, far surpasses prior ptychographic resolutions (1 to 5 angstroms) of uncorrected STEMs. We further show how geometric aberrations can create optimized, structured beams for dose-efficient electron ptychography. Our results demonstrate that expensive aberration correctors are no longer required for deep subangstrom resolution.

     
    more » « less
  3. Abstract Electron paramagnetic resonance (EPR) has become an important tool to probe conformational changes in nucleic acids. An array of EPR labels for nucleic acids are available, but they often come at the cost of long tethers, are dependent on the presence of a particular nucleotide or can be placed only at the termini. Site directed incorporation of Cu2+-chelated to a ligand, 2,2′dipicolylamine (DPA) is potentially an attractive strategy for site-specific, nucleotide independent Cu2+-labelling in DNA. To fully understand the potential of this label, we undertook a systematic and detailed analysis of the Cu2+-DPA motif using EPR and molecular dynamics (MD) simulations. We used continuous wave EPR experiments to characterize Cu2+ binding to DPA as well as optimize Cu2+ loading conditions. We performed double electron-electron resonance (DEER) experiments at two frequencies to elucidate orientational selectivity effects. Furthermore, comparison of DEER and MD simulated distance distributions reveal a remarkable agreement in the most probable distances. The results illustrate the efficacy of the Cu2+-DPA in reporting on DNA backbone conformations for sufficiently long base pair separations. This labelling strategy can serve as an important tool for probing conformational changes in DNA upon interaction with other macromolecules. 
    more » « less
  4. Abstract

    Transmission electron microscopy (TEM) is arguably the most important tool for atomic‐scale material characterization. A significant portion of the energy of transmitted electrons is transferred to the material under study through inelastic scattering, causing inadvertent damage via ionization, radiolysis, and heating. In particular, heat generation complicates TEM observations as the local temperature can affect material properties. Here, the heat generation due to electron irradiation is quantified using both top‐down and bottom‐up approaches: direct temperature measurements using nanowatt calorimeters as well as the quantification of energy loss due to inelastic scattering events using electron energy loss spectroscopy. Combining both techniques, a microscopic model is developed for beam‐induced heating and to identify the primary electron‐to‐heat conversion mechanism to be associated with valence electrons. Building on these results, the model provides guidelines to estimate temperature rise for general materials with reasonable accuracy. This study extends the ability to quantify thermal impact on materials down to the atomic scale.

     
    more » « less
  5. Abstract

    Electron tomography holds great promise as a tool for investigating the 3D morphologies and internal structures of metal‐organic framework‐based protein biocomposites (protein@MOFs). Understanding the 3D spatial arrangement of proteins within protein@MOFs is paramount for developing synthetic methods to control their spatial localization and distribution patterns within the biocomposite crystals. In this study, the naturally occurring iron oxide mineral core of the protein horse spleen ferritin (Fn) is leveraged as a contrast agent to directly observe individual proteins once encapsulated into MOFs by electron microscopy techniques. This methodology couples scanning electron microscopy, transmission electron microscopy, and electron tomography to garner detailed 2D and 3D structural interpretations of where proteins spatially lie in Fn@MOF crystals, addressing the significant gaps in understanding how synthetic conditions relate to overall protein spatial localization and aggregation. These findings collectively reveal that adjusting the ligand‐to‐metal ratios, protein concentration, and the use of denaturing agents alters how proteins are arranged, localized, and aggregated within MOF crystals.

     
    more » « less