skip to main content


Title: Boosting multi‐target recognition performance with multi‐input multi‐output radar‐based angular subspace projection and multi‐view deep neural network
Abstract

Current radio frequency (RF) classification techniques assume only one target in the field of view. Multi‐target recognition is challenging because conventional radar signal processing results in the superposition of target micro‐Doppler signatures, making it difficult to recognise multi‐target activity. This study proposes an angular subspace projection technique that generates multiple radar data cubes (RDC) conditioned on angle (RDC‐ω). This approach enables signal separation in the raw RDC, making possible the utilisation of deep neural networks taking the raw RF data as input or any other data representation in multi‐target scenarios. When targets are in closer proximity and cannot be separated by classical techniques, the proposed approach boosts the relative signal‐to‐noise ratio between targets, resulting in multi‐view spectrograms that boosts the classification accuracy when input to the proposed multi‐view DNN. Our results qualitatively and quantitatively characterise the similarity of multi‐view signatures to those acquired in a single‐target configuration. For a nine‐class activity recognition problem, 97.8% accuracy in a 3‐person scenario is achieved, while utilising DNN trained on single‐target data. We also present the results for two cases of close proximity (sign language recognition and side‐by‐side activities), where the proposed approach has boosted the performance.

 
more » « less
Award ID(s):
1932547 2047771
NSF-PAR ID:
10420631
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1049
Date Published:
Journal Name:
IET Radar, Sonar & Navigation
Volume:
17
Issue:
7
ISSN:
1751-8784
Page Range / eLocation ID:
p. 1115-1128
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Deaf spaces are unique indoor environments designed to optimize visual communication and Deaf cultural expression. However, much of the technological research geared towards the deaf involve use of video or wearables for American sign language (ASL) translation, with little consideration for Deaf perspective on privacy and usability of the technology. In contrast to video, RF sensors offer the avenue for ambient ASL recognition while also preserving privacy for Deaf signers. Methods: This paper investigates the RF transmit waveform parameters required for effective measurement of ASL signs and their effect on word-level classification accuracy attained with transfer learning and convolutional autoencoders (CAE). A multi-frequency fusion network is proposed to exploit data from all sensors in an RF sensor network and improve the recognition accuracy of fluent ASL signing. Results: For fluent signers, CAEs yield a 20-sign classification accuracy of %76 at 77 GHz and %73 at 24 GHz, while at X-band (10 Ghz) accuracy drops to 67%. For hearing imitation signers, signs are more separable, resulting in a 96% accuracy with CAEs. Further, fluent ASL recognition accuracy is significantly increased with use of the multi-frequency fusion network, which boosts the 20-sign fluent ASL recognition accuracy to 95%, surpassing conventional feature level fusion by 12%. Implications: Signing involves finer spatiotemporal dynamics than typical hand gestures, and thus requires interrogation with a transmit waveform that has a rapid succession of pulses and high bandwidth. Millimeter wave RF frequencies also yield greater accuracy due to the increased Doppler spread of the radar backscatter. Comparative analysis of articulation dynamics also shows that imitation signing is not representative of fluent signing, and not effective in pre-training networks for fluent ASL classification. Deep neural networks employing multi-frequency fusion capture both shared, as well as sensor-specific features and thus offer significant performance gains in comparison to using a single sensor or feature-level fusion. 
    more » « less
  2. null (Ed.)
    There is an increasing demand for performing machine learning tasks, such as human activity recognition (HAR) on emerging ultra-low-power internet of things (IoT) platforms. Recent works show substantial efficiency boosts from performing inference tasks directly on the IoT nodes rather than merely transmitting raw sensor data. However, the computation and power demands of deep neural network (DNN) based inference pose significant challenges when executed on the nodes of an energy-harvesting wireless sensor network (EH-WSN). Moreover, managing inferences requiring responses from multiple energy-harvesting nodes imposes challenges at the system level in addition to the constraints at each node. This paper presents a novel scheduling policy along with an adaptive ensemble learner to efficiently perform HAR on a distributed energy-harvesting body area network. Our proposed policy, Origin, strategically ensures efficient and accurate individual inference execution at each sensor node by using a novel activity-aware scheduling approach. It also leverages the continuous nature of human activity when coordinating and aggregating results from all the sensor nodes to improve final classification accuracy. Further, Origin proposes an adaptive ensemble learner to personalize the optimizations based on each individual user. Experimental results using two different HAR data-sets show Origin, while running on harvested energy, to be at least 2.5% more accurate than a classical battery-powered energy aware HAR classifier continuously operating at the same average power. 
    more » « less
  3. null (Ed.)
    RF sensing based human activity and hand gesture recognition (HGR) methods have gained enormous popularity with the development of small package, high frequency radar systems and powerful machine learning tools. However, most HGR experiments in the literature have been conducted on individual gestures and in isolation from preceding and subsequent motions. This paper considers the problem of American sign language (ASL) recognition in the context of daily living, which involves sequential classification of a continuous stream of signing mixed with daily activities. In particular, this paper investigates the efficacy of different RF input representations and fusion techniques for ASL and trigger gesture recognition tasks in a daily living scenario, which can be potentially used for sign language sensitive human-computer interfaces (HCI). The proposed approach involves first detecting and segmenting periods of motion, followed by feature level fusion of the range-Doppler map, micro-Doppler spectrogram, and envelope for classification with a bi-directional long short-term memory (BiL-STM) recurrent neural network. Results show 93.3% accuracy in identification of 6 activities and 4 ASL signs, as well as a trigger sign detection rate of 0.93. 
    more » « less
  4. Deep neural networks have become increasingly popular in radar micro-Doppler classification; yet, a key challenge, which has limited potential gains, is the lack of large amounts of measured data that can facilitate the design of deeper networks with greater robustness and performance. Several approaches have been proposed in the literature to address this problem, such as unsupervised pre-training and transfer learning from optical imagery or synthetic RF data. This work investigates an alternative approach to training which involves exploitation of “datasets of opportunity” – micro-Doppler datasets collected using other RF sensors, which may be of a different frequency, bandwidth or waveform - for the purposes of training. Specifically, this work compares in detail the cross-frequency training degradation incurred for several different training approaches and deep neural network (DNN) architectures. Results show a 70% drop in classification accuracy when the RF sensors for pre-training, fine-tuning, and testing are different, and a 15% degradation when only the pre-training data is different, but the fine-tuning and test data are from the same sensor. By using generative adversarial networks (GANs), a large amount of synthetic data is generated for pre-training. Results show that cross-frequency performance degradation is reduced by 50% when kinematically-sifted GAN-synthesized signatures are used in pre-training. 
    more » « less
  5. null (Ed.)
    Recently, significant efforts are made to explore device-free human activity recognition techniques that utilize the information collected by existing indoor wireless infrastructures without the need for the monitored subject to carry a dedicated device. Most of the existing work, however, focuses their attention on the analysis of the signal received by a single device. In practice, there are usually multiple devices "observing" the same subject. Each of these devices can be regarded as an information source and provides us an unique "view" of the observed subject. Intuitively, if we can combine the complementary information carried by the multiple views, we will be able to improve the activity recognition accuracy. Towards this end, we propose DeepMV, a unified multi-view deep learning framework, to learn informative representations of heterogeneous device-free data. DeepMV can combine different views' information weighted by the quality of their data and extract commonness shared across different environments to improve the recognition performance. To evaluate the proposed DeepMV model, we set up a testbed using commercialized WiFi and acoustic devices. Experiment results show that DeepMV can effectively recognize activities and outperform the state-of-the-art human activity recognition methods. 
    more » « less