- Award ID(s):
- 1822923
- NSF-PAR ID:
- 10296321
- Date Published:
- Journal Name:
- 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE)
- Page Range / eLocation ID:
- 1414 to 1419
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Many recent works have shown substantial efficiency boosts from performing inference tasks on Internet of Things (IoT) nodes rather than merely transmitting raw sensor data. However, such tasks, e.g., convolutional neural networks (CNNs), are very compute intensive. They are therefore challenging to complete at sensing-matched latencies in ultra-low-power and energy-harvesting IoT nodes. ReRAM crossbar-based accelerators (RCAs) are an ideal candidate to perform the dominant multiplication-and-accumulation (MAC) operations in CNNs efficiently, but conventional, performance-oriented RCAs, while energy-efficient, are power hungry and ill-optimized for the intermittent and unstable power supply of energy-harvesting IoT nodes. This paper presents the ResiRCA architecture that integrates a new, lightweight, and configurable RCA suitable for energy harvesting environments as an opportunistically executing augmentation to a baseline sense-and-transmit battery-powered IoT node. To maximize ResiRCA throughput under different power levels, we develop the ResiSchedule approach for dynamic RCA reconfiguration. The proposed approach uses loop tiling-based computation decomposition, model duplication within the RCA, and inter-layer pipelining to reduce RCA activation thresholds and more closely track execution costs with dynamic power income. Experimental results show that ResiRCA together with ResiSchedule achieve average speedups and energy efficiency improvements of 8× and 14× respectively compared to a baseline RCA with intermittency-unaware scheduling.more » « less
-
Human activity recognition (HAR) has attracted significant research interest due to its applications in health monitoring and patient rehabilitation. Recent research on HAR focuses on using smartphones due to their widespread use. However, this leads to inconvenient use, limited choice of sensors and inefficient use of resources, since smartphones are not designed for HAR. This paper presents the first HAR framework that can perform both online training and inference. The proposed framework starts with a novel technique that generates features using the fast Fourier and discrete wavelet transforms of a textile-based stretch sensor and accelerometer data. Using these features, we design a neural network classifier which is trained online using the policy gradient algorithm. Experiments on a low power IoT device (TI-CC2650 MCU) with nine users show 97.7% accuracy in identifying six activities and their transitions with less than 12.5 mW power consumption.more » « less
-
This paper presents an energy-efficient classification framework that performs human activity recognition (HAR). Typically, HAR classification tasks require a computational platform that includes a processor and memory along with sensors and their interfaces, all of which consume significant power. The presented framework employs microelectromechanical systems (MEMS) based Continuous Time Recurrent Neural Network (CTRNN) to perform HAR tasks very efficiently. In a real physical implementation, we show that the MEMS-CTRNN nodes can perform computing while consuming power on a nano-watts scale compared to the micro-watts state-of-the-art hardware. We also confirm that this huge power reduction doesn't come at the expense of reduced performance by evaluating its accuracy to classify the highly cited human activity recognition dataset (HAPT). Our simulation results show that the HAR framework that consists of a training module, and a network of MEMS-based CTRNN nodes, provides HAR classification accuracy for the HAPT that is comparable to traditional CTRNN and other Recurrent Neural Network (RNN) implantations. For example, we show that the MEMS-based CTRNN model average accuracy for the worst-case scenario of not using pre-processing techniques, such as quantization, to classify 5 different activities is 77.94% compared to 78.48% using the traditional CTRNN.more » « less
-
CIM: A Novel Clustering-based Energy-Efficient Data Imputation Method for Human Activity Recognition
Human activity recognition (HAR) is an important component in a number of health applications, including rehabilitation, Parkinson’s disease, daily activity monitoring, and fitness monitoring. State-of-the-art HAR approaches use multiple sensors on the body to accurately identify activities at runtime. These approaches typically assume that data from all sensors are available for runtime activity recognition. However, data from one or more sensors may be unavailable due to malfunction, energy constraints, or communication challenges between the sensors. Missing data can lead to significant degradation in the accuracy, thus affecting quality of service to users. A common approach for handling missing data is to train classifiers or sensor data recovery algorithms for each combination of missing sensors. However, this results in significant memory and energy overhead on resource-constrained wearable devices. In strong contrast to prior approaches, this paper presents a clustering-based approach (CIM) to impute missing data at runtime. We first define a set of possible clusters and representative data patterns for each sensor in HAR. Then, we create and store a mapping between clusters across sensors. At runtime, when data from a sensor are missing, we utilize the stored mapping table to obtain most likely cluster for the missing sensor. The representative window for the identified cluster is then used as imputation to perform activity classification. We also provide a method to obtain imputation-aware activity prediction sets to handle uncertainty in data when using imputation. Experiments on three HAR datasets show that CIM achieves accuracy within 10% of a baseline without missing data for one missing sensor when providing single activity labels. The accuracy gap drops to less than 1% with imputation-aware classification. Measurements on a low-power processor show that CIM achieves close to 100% energy savings compared to state-of-the-art generative approaches.
-
null (Ed.)The concept of Industry 4.0 introduces the unification of industrial Internet-of-Things (IoT), cyber physical systems, and data-driven business modeling to improve production efficiency of the factories. To ensure high production efficiency, Industry 4.0 requires industrial IoT to be adaptable, scalable, real-time, and reliable. Recent successful industrial wireless standards such as WirelessHART appeared as a feasible approach for such industrial IoT. For reliable and real-time communication in highly unreliable environments, they adopt a high degree of redundancy. While a high degree of redundancy is crucial to real-time control, it causes a huge waste of energy, bandwidth, and time under a centralized approach and are therefore less suitable for scalability and handling network dynamics. To address these challenges, we propose DistributedHART—a distributed real-time scheduling system for WirelessHART networks. The essence of our approach is to adopt local (node-level) scheduling through a time window allocation among the nodes that allows each node to schedule its transmissions using a real-time scheduling policy locally and online. DistributedHART obviates the need of creating and disseminating a central global schedule in our approach, thereby significantly reducing resource usage and enhancing the scalability. To our knowledge, it is the first distributed real-time multi-channel scheduler for WirelessHART. We have implemented DistributedHART and experimented on a 130-node testbed. Our testbed experiments as well as simulations show at least 85% less energy consumption in DistributedHART compared to existing centralized approach while ensuring similar schedulability.more » « less