Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Multisensory integration (MSI) combines information from more than one sensory modality to elicit behaviours distinct from unisensory behaviours. MSI is best understood in animals with complex brains and specialized centres for parsing different modes of sensory information, but dispersive larvae of sessile marine invertebrates utilize multimodal environmental sensory stimuli to base irreversible settlement decisions on, and most lack complex brains. Here, we examined the sensory determinants of settlement in actinula larvae of the hydrozoanEctopleura crocea(Cnidaria), which possess a diffuse nerve net. A factorial settlement study revealed that photo‐, chemo‐ and mechanosensory cues each influenced the settlement response in a complex and hierarchical manner that was dependent on specific combinations of cues, an indication of MSI. Additionally, sensory gene expression over development peaked with developmental competence to settle, which in actinulae, requires cnidocyte discharge. Transcriptome analyses also highlighted several deep homological links between cnidarian and bilaterian mechano‐, chemo‐, and photosensory pathways. Fluorescent in situ hybridization studies of candidate transcripts suggested cellular partitioning of sensory function among the few cell types that comprise the actinula nervous system, where ubiquitous polymodal sensory neurons expressing putative chemo‐ and photosensitivity interface with mechanoreceptive cnidocytes. We propose a simple multisensory processing circuit, involving polymodal chemo/photosensory neurons and mechanoreceptive cnidocytes, that is sufficient to explain MSI in actinulae settlement. Our study demonstrates that MSI is not exclusive to complex brains, but likely predated and contextualized their evolution.more » « less
-
Hagfishes are deep-sea animals, and they represent one of the oldest living relatives of animals with backbones. To defend themselves against predators, they produce a remarkable slime that is reinforced with fibers and can clog a predator’s gills, thwarting the attack. The slime deploys in less than half a second, exuding from specialized glands on the hagfish’s body and expanding up to 10,000 times its ejected volume. The defensive slime is highly dilute, consisting mostly of sea water, with low concentrations of mucus and strong, silk-like threads that are approximately 20 centimeters long. Where and how hagfish slime evolved remains a mystery. Zeng et al. set out to answer where on the hagfish’s body the slime glands originated, and how they may have evolved. First, Zeng et al. examined hagfishes and found that cells in the surface layer of their skin (the epidermis) produce threads roughly two millimeters in length that are released when the hagfish’s skin is damaged. These threads mix with the mucus that is produced by ruptured skin cells to form a slime that likely adheres to predators’ mouths. This slime could be a precursor of the slime produced by the specialized glands. To test this hypothesis, Zeng et al. analyzed which genes are turned on and off both in the hagfishes’ skin and in their slime glands. The patterns they found are consistent with the slime glands originating from the epidermis. Based on these results, Zeng et al. propose that ancient hagfishes first evolved the ability to produce slime with anti-predator effects when their skin was damaged in attacks. Over time, hagfishes that could produce and store more slime and eject it actively into a predator’s mouth likely had a better chance of surviving. This advantage may have led to the appearance of increasingly specialized glands that could carry out these functions. The findings of Zeng et al. will be of interest to evolutionary biologists, marine biologists, and those studying the ecology of predator-prey interactions. Because of its unique material properties, hagfish slime is also of interest to biophysicists, bioengineers and those engaged in biomimetic research. The origin of hagfish slime glands is an interesting example of how a new trait evolved, and may provide insight into the evolution of other adaptive traits.more » « less
-
null (Ed.)Hagfishes are an ancient group of benthic marine craniates that are found in deep or cold waters around the world. Among the 83 valid species, four are described from the Galapagos Islands: Eptatretus bobwisneri, E. grouseri, E. mccoskeri and Rubicundus lakeside. During a recent expedition to the archipelago, six species of hagfishes were collected, including four undescribed species of the genera Eptatretus (Eptatretus goslinei sp. nov.) and Myxine (Myxine greggi sp. nov., M. martinii sp. nov. and M. phantasma sp. nov.). In this paper, we provide a review of the eight species of hagfishes from the Galapagos Islands, including new diagnoses and an identification key for all species. Myxine phantasma is remarkable in that it is the only species of Myxine known to completely lack melaninbased pigments. Our species delineations were based on both morphological and molecular analyses. A phylogenetic hypothesis based on molecular data suggests that Galapagos hagfishes arose from multiple independent colonisations of the islands from as many as five different ancestral lineages. The large number of endemic hagfishes in the geologically young Galapagos Islands suggests that there is much global hagfish diversity yet to be discovered.more » « less
An official website of the United States government
