skip to main content


Title: Structural Relationships Across the Sevier Gravity Slide of Southwest Utah and Implications for Catastrophic Translation and Emplacement Processes of Long Runout Landslides
Abstract

The physical processes that facilitate long‐distance translation of large‐volume gravity slides remain poorly understood. To better understand these processes and the controls on runout distance, we conducted an outcrop and microstructural characterization of the Sevier gravity slide across the former land surface and summarize findings of four key sites. The Sevier gravity slide is the oldest of three mega‐scale (>1,000 km2) collapse events of the Marysvale volcanic field (Utah, USA). Field observations of intense deformation, clastic dikes, pseudotachylyte, and consistency of kinematic indicators support the interpretation of rapid emplacement during a single event. Furthermore, clastic dikes and characteristics of the slip zone suggest emplacement involved mobilization and pressurized injection of basal material. Across the runout distance, we observe evidence for progressive slip delocalization along the slide base. This manifests as centimeter‐ to decimeter‐thick cataclastic basal zones and abundant clastic dikes in the north and tens of meters thick basal zones characterized by widespread deformation of both slide blocks and underlying rock near the southern distal end of the gravity slide. Superimposed on this transition are variations in basal zone characteristics and slide geometry arising from interactions between slide blocks during dynamic wear and deposition processes and pre‐existing topography of the former land surface. These observations are synthesized into a conceptual model in which the presence of highly pressurized fluids reduced the frictional resistance to sliding during the emplacement of the Sevier gravity slide, and basal zone evolution controlled the effectiveness of dynamic weakening mechanisms across the former land surface.

 
more » « less
Award ID(s):
2113155
NSF-PAR ID:
10420720
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
24
Issue:
5
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Formation and evolution of the basal layer in large landslides has important implications for processes that reduce frictional resistance to sliding. In this report, we show that zircon geochronology and tectonic provenance can be used to investigate the basal layer of the gigantic-scale Markagunt gravity slide of Utah, USA. Basal layer and clastic injectite samples have unique tectonic chronofacies that identify the rock units that were broken down during emplacement. Our results show that basal material from sites on the former land surface is statistically indistinguishable and formed primarily by the breakdown of upper plate lithologies during sliding. Decapitated injectites have a different tectonic chronofacies than the local basal layer, with more abundant lower plate-derived zircons. This suggests clastic dikes formed earlier in the translation history from a structurally deeper portion of the slide surface and a compositionally different basal layer before being translated to their current position. 
    more » « less
  2. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 372 combines two research topics, slow slip events (SSEs) on subduction faults (IODP Proposal 781A-Full) and actively deforming gas hydrate–bearing landslides (Proposal 841-APL). Our study area on the Hikurangi margin east of New Zealand provides unique locations for addressing both research topics. Gas hydrates have long been suspected of being involved in seafloor failure; not much evidence, however, has been found to date for gas hydrate–related submarine landslides. Solid, icelike gas hydrate in sediment pores is generally thought to increase seafloor strength, as confirmed by a number of laboratory measurements. Dissociation of gas hydrate to water and overpressured gas, on the other hand, may destabilize the seafloor, potentially causing submarine landslides. The Tuaheni Landslide Complex on the Hikurangi margin shows evidence for active, creeping deformation. Intriguingly, the landward edge of creeping coincides with the pinchout of the base of gas hydrate stability (BGHS) on the seafloor. We therefore hypothesize that gas hydrate may be linked to creeping by (1) repeated small-scale sliding at the BGHS, in a variation of the conventional model linking gas hydrates and seafloor failure; (2) overpressure at the BGHS due to a permeability reduction linked to gas hydrates, which may lead to hydrofracturing, weakening the seafloor and allowing transmission of pressure into the gas hydrate stability zone; or (3) icelike viscous deformation of gas hydrates in sediment pores, similar to onshore rock glaciers. The latter two processes imply that gas hydrate itself is involved in creeping, constituting a paradigm shift in relating gas hydrates to submarine slope failure. Alternatively, creeping may not be related to gas hydrates but instead be caused by repeated pressure pulses or linked to earthquake-related liquefaction. We have devised a coring and logging program to test our hypotheses. SSEs at subduction zones are an enigmatic form of creeping fault behavior. At the northern Hikurangi subduction margin (HSM), they are among the best-documented and shallowest on Earth. They recur about every 2 y and may extend close to the trench, where clastic and pelagic sediments about 1.0–1.5 km thick overlie the subducting, seamount-studded Hikurangi Plateau. The northern HSM thus provides an excellent setting to use IODP capabilities to discern the mechanisms behind slow slip fault behavior, as proposed in IODP Proposal 781A-Full. The objectives of Proposal 781A-Full will be implemented across two related IODP expeditions, 372 and 375. Expedition 372 will undertake logging while drilling (LWD) at three sites targeting the upper plate (midslope basin, proposed Site HSM-01A), the frontal thrust (proposed Site HSM-18A), and the subducting section in the trench (proposed Site HSM-05A). Expedition 375 will undertake coring at the same sites, as well as an additional seamount site on the subducting plate, and implement the borehole observatory objectives. The data from each expedition will be shared between both scientific parties. Collectively, the LWD and coring data will be used to (1) characterize the compositional, structural, thermal, and diagenetic state of the incoming plate and the shallow plate boundary fault near the trench, which comprise the protolith and initial conditions for fault zone rock associated with SSEs at greater depth, and (2) characterize the material properties, thermal regime, and stress conditions in the upper plate above the SSE source region. These data will be used during Expedition 375 to guide the installation of CORK observatories at the frontal thrust and in the upper plate above the SSE source to monitor temporal variations in deformation, fluid flow, seismicity, and physical and chemical properties throughout the SSE cycle (Saffer et al., 2017). Together, these data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface. 
    more » « less
  3. In the eastern San Gabriel Mountains, located north of Los Angeles, California, the late Cenozoic Cucamonga thrust has uplifted and exposed the lower crustal root of the Mesozoic Southern California Batholith. We use structural data and U-Pb zircon analyses from these exposures to document changes in the style of intra-arc deformation in the batholith as the Laramide Orogeny began during the Late Cretaceous (at or after ~90 Ma). At the base of the uplifted section, a 4 km-thick package of metasedimentary rock records the intrusion of amphibolite, charnokite and other dikes of probable Jurassic to Early Cretaceous age. The oldest gneissic fabrics (S1, S2) in these rocks record Early Cretaceous partial melting, granulite-facies metamorphism, and top-to-the-S and -SE (present day reference frame) reverse motion on surfaces that dip moderately to the N and NW. These structures define a D1/D2 thrust system that formed on the trench side of the arc and was active during the Early Cretaceous. From 89-77 Ma this thrust system was reactivated by oblique-slip shear zones (D3) that record sinistral-reverse displacements on N- and NW-dipping surfaces. The timing of deformation in these latter shear zones is indicated by the age of 90-85 Ma syn-kinematic intrusions of the Tonalite of San Sevaine Lookout. After emplacement of the tonalite, the lower crustal section was deformed by a series of S-vergent, overturned folds. The emplacement of granodioritic dikes into the axial planes of some of these folds suggests that they formed during the latest stages of D3 transpression and tonalite emplacement. Superimposed on all these structures are a series of ductile-to-brittle thrust faults and folds that appear to be related to formation of the late Cenozoic Cucamonga thrust fault at the southern edge of the San Gabriel mountains. These data show that the Southern California Batholith in the San Gabriel Mountains records a tectonic transition from Early Cretaceous reverse faulting and crustal imbrication on the trench side of the arc to Late Cretaceous transpression and oblique sinistral-reverse deformation during a magmatic flare-up from 89-77 Ma. Another major episode of shortening and crustal imbrication occurred during the late Cenozoic when the Cucamonga thrust uplifted the San Gabriel block. 
    more » « less
  4. The Southern California Batholith is a ~500-km-wide segment of the Mesozoic California arc that lies between the northern Peninsular Ranges and the southern Sierra Nevada mountains. We use structural data and U-Pb zircon analyses from the eastern San Gabriel mountains to examine how the batholith responded to the onset of the Laramide orogeny during the Late Cretaceous. Zircon analyses show that the middle and lower crust of the batholith was hot and records a magmatic flareup from 90-77 Ma. From 90 to 86 Ma, tonalite of the San Sevaine Lookout intruded a thick package of metasedimentary rock that records a history of reverse displacements, crustal imbrication, and granulite metamorphism prior to tonalite intrusion. During the early stages of the magmatic flare-up, granodiorite dikes were emplaced and soon became tightly folded and disaggregated as younger sheets of comagmatic tonalite intruded. Deformation accompanied the magmatism, forming two parallel shear zones several 100 m thick. These two shear zones, which include the Black Belt Mylonite, are composed of thin (≤10 m) high-strain zones spaced several tens of meters apart. Each discrete high-strain zone contains subparallel layers of mylonite, ultramylonite, cataclasite and pseudotachylyte, all recording oblique sinistral-reverse displacements on gently and moderately dipping surfaces. This architecture, whereby individual high-strain zones are widely spaced and parallel the margins of intruding tonalite sheets, reveals the influence of magma emplacement on shear zone structure. U-Pb zircon geochronology on syn-tectonic dikes indicate that these different styles of deformation all formed within the same 89-85 Ma interval, suggesting that they reflect non-steady flow on deep seismogenic faults. Widespread (garnet) granulite-facies metamorphism and partial melting accompanied intrusion of the tonalites and sinistral- reverse displacements. The ages of undeformed dikes indicate that the deformation was over by 77-75 Ma. Together, these data show that arc magmatism and transpression within the Mesozoic California arc occurred from ~90 until ~75 Ma, implying that flat-slab subduction and the migration of the Laramide orogenic front into the North America interior occurred after ~75 Ma. 
    more » « less
  5. Many large fault zones record multiple reactivations that can be difficult to resolve and interpret in the field. Here, we use examples from Vermont and New Zealand to illustrate how structural data combined with 40Ar/39Ar geochronology can be used to reconstruct fault reactivation histories and interpret their possible origins. In SW New Zealand, the Spey-Mica Burn fault zone parallels a transpressive boundary between the Pacific and Australian plates. Integrated structural and 40Ar/39Ar data obtained from pseudotachylyte, mylonite, and other fault rocks allow us to distinguish successive phases of faulting (i.e., reactivations) from cases where different styles of brittle and ductile deformation occurred simultaneously (or nearly so) in the fault zone. Apparent age spectra from multiple minerals show age gradients that reveal four reactivations spanning ~20 Ma. The style and timing of these events correlate well to times of increased convergence rate and collisions between oceanic ridge segments and a nearby trench. Fault zones in NW Vermont also record different styles of reactivation. The Hinesburg Thrust (HT), which juxtaposes Late Proterozoic-Early Cambrian rift clastic rocks against Ordovician carbonate rocks of the Champlain Valley belt, includes a ~30 m thick zone of mylonite that is cut by a cataclastic fault and deformed by folds. 40Ar/39Ar data suggest the mylonite formed during the Ordovician Taconic orogeny and later was folded into a series of domes and basins during the Late Silurian-Devonian Acadian orogeny. Farther west, the Champlain thrust fault (CT) juxtaposes Cambrian dolostones against Ordovician calcareous shales. Superposed faults within the foot wall of the CT show a progressive change in movement direction from W-directed thrusting, to NW-directed thrusting, to N-S slip, and NE-SW slip. These changing slip directions appear to reflect wholly Taconic motion along a north-dipping lateral ramp between Burlington and Shelburne where the CT cuts up section to the south. Acadian reactivation of the CT appears restricted to late folding similar to the HT. These examples highlight the utility of combining structural data with 40Ar/39Ar geochronology to unravel slip histories in continental fault zones and to distinguish among the different styles and origins of fault reactivation. 
    more » « less