skip to main content


Title: Plastid Genome Assembly Using Long‐read data
Abstract

Although plastid genome (plastome) structure is highly conserved across most seed plants, investigations during the past two decades have revealed several disparately related lineages that experienced substantial rearrangements. Most plastomes contain a large inverted repeat and two single‐copy regions, and a few dispersed repeats; however, the plastomes of some taxa harbour long repeat sequences (>300 bp). These long repeats make it challenging to assemble complete plastomes using short‐read data, leading to misassemblies and consensus sequences with spurious rearrangements. Single‐molecule, long‐read sequencing has the potential to overcome these challenges, yet there is no consensus on the most effective method for accurately assembling plastomes using long‐read data. We generated a pipeline,plastidGenomeAssemblyUsingLong‐read data (ptGAUL), to address the problem of plastome assembly using long‐read data from Oxford Nanopore Technologies (ONT) or Pacific Biosciences platforms. We demonstrated the efficacy of the ptGAUL pipeline using 16 published long‐read data sets. We showed that ptGAUL quickly produces accurate and unbiased assemblies using only ~50× coverage of plastome data. Additionally, we deployed ptGAUL to assemble four newJuncus(Juncaceae) plastomes using ONT long reads. Our results revealed many long repeats and rearrangements inJuncusplastomes compared with basal lineages of Poales. The ptGAUL pipeline is available on GitHub:https://github.com/Bean061/ptgaul.

 
more » « less
NSF-PAR ID:
10420741
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology Resources
Volume:
23
Issue:
6
ISSN:
1755-098X
Page Range / eLocation ID:
p. 1442-1457
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    The plastid genome (plastome), while surprisingly constant in gene order and content across most photosynthetic angiosperms, exhibits variability in several unrelated lineages. During the diversification history of the legume family Fabaceae, plastomes have undergone many rearrangements, including inversions, expansion, contraction and loss of the typical inverted repeat (IR), gene loss and repeat accumulation in both shared and independent events. While legume plastomes have been the subject of study for some time, most work has focused on agricultural species in the IR‐lacking clade (IRLC) and the plant modelMedicago truncatula. The subfamily Papilionoideae, which contains virtually all of the agricultural legume species, also comprises most of the plastome variation detected thus far in the family. In this study three non‐papilioniods were included among 34 newly sequenced legume plastomes, along with 33 publicly available sequences, to assess plastome structural evolution in the subfamily. In an effort to examine plastome variation across the subfamily, approximately 20% of the sampling represents the IRLC with the remainder selected to represent the early‐branching papilionoid clades. A number of IR‐related and repeat‐mediated changes were identified and examined in a phylogenetic context. Recombination between direct repeats associated withycf2resulted in intraindividual plastome heteroplasmy. Although loss of the IR has not been reported in legumes outside of the IRLC, one genistoid taxon was found to completely lack the typical plastome IR. The role of the IR and non‐IR repeats in the progression of plastome change is discussed.

     
    more » « less
  2. Abstract Background

    Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region. However, only a small fraction of cactus diversity has been analysed so far.

    Methods

    Here, we investigated plastome features of the tribe Opuntieae, the remarkable prickly pear cacti, which represent one of the most diverse and important lineages of Cactaceae. We assembled de novo the plastome of 43 species, representing a comprehensive sampling of the tribe, including all seven genera, and analysed their evolution in a phylogenetic comparative framework. Phylogenomic analyses with different datasets (full plastome sequences and genes only) were performed, followed by congruence analyses to assess signals underlying contentious nodes.

    Key Results

    Plastomes varied considerably in length, from 121 to 162 kbp, with striking differences in the content and size of the IR region (contraction and expansion events), including a lack of the canonical IR in some lineages and the pseudogenization or loss of some genes. Overall, nine different types of plastomes were reported, deviating in the presence of the IR region or the genes contained in the IR. Overall, plastome sequences resolved phylogenetic relationships within major clades of Opuntieae with high bootstrap values but presented some contentious nodes depending on the dataset analysed (e.g. whole plastome vs. genes only). Congruence analyses revealed that most plastidial regions lack phylogenetic resolution, while few markers are supporting the most likely topology. Likewise, alternative topologies are driven by a handful of plastome markers, suggesting recalcitrant nodes in the phylogeny.

    Conclusions

    Our study reveals a dynamic nature of plastome evolution across closely related lineages, shedding light on peculiar features of plastomes. Variation of plastome types across Opuntieae is remarkable in size, structure and content and can be important for the recognition of species in some major clades. Unravelling connections between the causes of plastome variation and the consequences for species biology, physiology, ecology, diversification and adaptation is a promising and ambitious endeavour in cactus research. Although plastome data resolved major phylogenetic relationships, the generation of nuclear genomic data is necessary to confront these hypotheses and assess the recalcitrant nodes further.

     
    more » « less
  3. INTRODUCTION Transposable elements (TEs), repeat expansions, and repeat-mediated structural rearrangements play key roles in chromosome structure and species evolution, contribute to human genetic variation, and substantially influence human health through copy number variants, structural variants, insertions, deletions, and alterations to gene transcription and splicing. Despite their formative role in genome stability, repetitive regions have been relegated to gaps and collapsed regions in human genome reference GRCh38 owing to the technological limitations during its development. The lack of linear sequence in these regions, particularly in centromeres, resulted in the inability to fully explore the repeat content of the human genome in the context of both local and regional chromosomal environments. RATIONALE Long-read sequencing supported the complete, telomere-to-telomere (T2T) assembly of the pseudo-haploid human cell line CHM13. This resource affords a genome-scale assessment of all human repetitive sequences, including TEs and previously unknown repeats and satellites, both within and outside of gaps and collapsed regions. Additionally, a complete genome enables the opportunity to explore the epigenetic and transcriptional profiles of these elements that are fundamental to our understanding of chromosome structure, function, and evolution. Comparative analyses reveal modes of repeat divergence, evolution, and expansion or contraction with locus-level resolution. RESULTS We implemented a comprehensive repeat annotation workflow using previously known human repeats and de novo repeat modeling followed by manual curation, including assessing overlaps with gene annotations, segmental duplications, tandem repeats, and annotated repeats. Using this method, we developed an updated catalog of human repetitive sequences and refined previous repeat annotations. We discovered 43 previously unknown repeats and repeat variants and characterized 19 complex, composite repetitive structures, which often carry genes, across T2T-CHM13. Using precision nuclear run-on sequencing (PRO-seq) and CpG methylated sites generated from Oxford Nanopore Technologies long-read sequencing data, we assessed RNA polymerase engagement across retroelements genome-wide, revealing correlations between nascent transcription, sequence divergence, CpG density, and methylation. These analyses were extended to evaluate RNA polymerase occupancy for all repeats, including high-density satellite repeats that reside in previously inaccessible centromeric regions of all human chromosomes. Moreover, using both mapping-dependent and mapping-independent approaches across early developmental stages and a complete cell cycle time series, we found that engaged RNA polymerase across satellites is low; in contrast, TE transcription is abundant and serves as a boundary for changes in CpG methylation and centromere substructure. Together, these data reveal the dynamic relationship between transcriptionally active retroelement subclasses and DNA methylation, as well as potential mechanisms for the derivation and evolution of new repeat families and composite elements. Focusing on the emerging T2T-level assembly of the HG002 X chromosome, we reveal that a high level of repeat variation likely exists across the human population, including composite element copy numbers that affect gene copy number. Additionally, we highlight the impact of repeats on the structural diversity of the genome, revealing repeat expansions with extreme copy number differences between humans and primates while also providing high-confidence annotations of retroelement transduction events. CONCLUSION The comprehensive repeat annotations and updated repeat models described herein serve as a resource for expanding the compendium of human genome sequences and reveal the impact of specific repeats on the human genome. In developing this resource, we provide a methodological framework for assessing repeat variation within and between human genomes. The exhaustive assessment of the transcriptional landscape of repeats, at both the genome scale and locally, such as within centromeres, sets the stage for functional studies to disentangle the role transcription plays in the mechanisms essential for genome stability and chromosome segregation. Finally, our work demonstrates the need to increase efforts toward achieving T2T-level assemblies for nonhuman primates and other species to fully understand the complexity and impact of repeat-derived genomic innovations that define primate lineages, including humans. Telomere-to-telomere assembly of CHM13 supports repeat annotations and discoveries. The human reference T2T-CHM13 filled gaps and corrected collapsed regions (triangles) in GRCh38. Combining long read–based methylation calls, PRO-seq, and multilevel computational methods, we provide a compendium of human repeats, define retroelement expression and methylation profiles, and delineate locus-specific sites of nascent transcription genome-wide, including previously inaccessible centromeres. SINE, short interspersed element; SVA, SINE–variable number tandem repeat– Alu ; LINE, long interspersed element; LTR, long terminal repeat; TSS, transcription start site; pA, xxxxxxxxxxxxxxxx. 
    more » « less
  4. Telomeres consist of highly conserved simple tandem telomeric repeat motif (TRM): (TTAGG)n in arthropods, (TTAGGG)n in vertebrates, and (TTTAGGG)n in most plants. TRM can be detected from chromosome-level assembly, which typically requires long-read sequencing data. To take advantage of short-read data, we developed an ultra-fast Telomeric Repeats Identification Pipeline and evaluated its performance on 91 species. With proven accuracy, we applied Telomeric Repeats Identification Pipeline in 129 insect species, using 7 Tbp of short-read sequences. We confirmed (TTAGG)n as the TRM in 19 orders, suggesting it is the ancestral form in insects. Systematic profiling in Hymenopterans revealed a diverse range of TRMs, including the canonical 5-bp TTAGG (bees, ants, and basal sawflies), three independent losses of tandem repeat form TRM (Ichneumonoids, hunting wasps, and gall-forming wasps), and most interestingly, a common 8-bp (TTATTGGG)n in Chalcid wasps with two 9-bp variants in the miniature wasp (TTACTTGGG) and fig wasps (TTATTGGGG). Our results identified extraordinary evolutionary fluidity of Hymenopteran TRMs, and rapid evolution of TRM and repeat abundance at all evolutionary scales, providing novel insights into telomere evolution. 
    more » « less
  5. Tribble, C (Ed.)
    Abstract The majority of sequenced genomes in the monocots are from species belonging to Poaceae, which include many commercially important crops. Here, we expand the number of sequenced genomes from the monocots to include the genomes of 4 related cyperids: Carex cristatella and Carex scoparia from Cyperaceae and Juncus effusus and Juncus inflexus from Juncaceae. The high-quality, chromosome-scale genome sequences from these 4 cyperids were assembled by combining whole-genome shotgun sequencing of Nanopore long reads, Illumina short reads, and Hi-C sequencing data. Some members of the Cyperaceae and Juncaceae are known to possess holocentric chromosomes. We examined the repeat landscapes in our sequenced genomes to search for potential repeats associated with centromeres. Several large satellite repeat families, comprising 3.2–9.5% of our sequenced genomes, showed dispersed distribution of large satellite repeat clusters across all Carex chromosomes, with few instances of these repeats clustering in the same chromosomal regions. In contrast, most large Juncus satellite repeats were clustered in a single location on each chromosome, with sporadic instances of large satellite repeats throughout the Juncus genomes. Recognizable transposable elements account for about 20% of each of the 4 genome assemblies, with the Carex genomes containing more DNA transposons than retrotransposons while the converse is true for the Juncus genomes. These genome sequences and annotations will facilitate better comparative analysis within monocots. 
    more » « less