skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2034929

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Beckles, Diane (Ed.)
    Abstract Heterotrimeric G-proteins, composed of Gα, Gβ, and Gγ subunits, are involved in the regulation of multiple signaling pathways in plants. OsDEP1 (a Gγ subunit) of rice and TaNBP1 (a Gβ subunit) of wheat are homologs of Arabidopsis AGG3 and AGB1, respectively, which are regulators of grain size and also involved in nitrogen responses. However, the function of Arabidopsis G-proteins in nitrogen utilization under different nitrogen conditions has not been fully investigated. In this study, to evaluate the role of Arabidopsis G-proteins in yield and nitrogen use efficiency (NUE), overexpression transgenic lines AtGPA1, AtAGB1 together with AtAGG1 (AGB1-AGG1), AtAGB1 together with AtAGG2 (AGB1-AGG2), and AtAGB1 together with AtAGG3 (AGB1-AGG3) were created in Brassica napus ‘K407’. Analysis of multiple transgenic B. napus lines showed that overexpression of GPA1, AGB1-AGG1, AGB1-AGG2, or AGB1-AGG3 led to increased biomass of seedling plants, including a well-developed root system, and increased nitrogen uptake under low and high nitrogen conditions. The activity of glutamine synthetase, a key nitrogen assimilating enzyme, and the expression levels of genes that are involved in nitrogen uptake and assimilation were significantly increased in overexpression plants under the low nitrogen condition. These properties enabled overexpression plants to increase the number of seeds per silique by 12–27% only under the low nitrogen condition, effectively improving yield per plant by 9–69% and NUE by 7–49%. These results reveal roles of G-proteins in regulating seed traits and NUE, and provide a strategy that can substantially improve crop yield and NUE. 
    more » « less
    Free, publicly-accessible full text available March 19, 2026
  2. Abstract Although plastid genome (plastome) structure is highly conserved across most seed plants, investigations during the past two decades have revealed several disparately related lineages that experienced substantial rearrangements. Most plastomes contain a large inverted repeat and two single‐copy regions, and a few dispersed repeats; however, the plastomes of some taxa harbour long repeat sequences (>300 bp). These long repeats make it challenging to assemble complete plastomes using short‐read data, leading to misassemblies and consensus sequences with spurious rearrangements. Single‐molecule, long‐read sequencing has the potential to overcome these challenges, yet there is no consensus on the most effective method for accurately assembling plastomes using long‐read data. We generated a pipeline,plastidGenomeAssemblyUsingLong‐read data (ptGAUL), to address the problem of plastome assembly using long‐read data from Oxford Nanopore Technologies (ONT) or Pacific Biosciences platforms. We demonstrated the efficacy of the ptGAUL pipeline using 16 published long‐read data sets. We showed that ptGAUL quickly produces accurate and unbiased assemblies using only ~50× coverage of plastome data. Additionally, we deployed ptGAUL to assemble four newJuncus(Juncaceae) plastomes using ONT long reads. Our results revealed many long repeats and rearrangements inJuncusplastomes compared with basal lineages of Poales. The ptGAUL pipeline is available on GitHub:https://github.com/Bean061/ptgaul. 
    more » « less
  3. Abstract G-proteins are molecular on–off switches that are involved in transmitting a variety of extracellular signals to their intracellular targets. In animal and yeast systems, the switch property is encoded through nucleotides: a GDP-bound state is the “off-state” and the GTP-bound state is the “on-state”. The G-protein cycle consists of the switch turning on through nucleotide exchange facilitated by a G-protein coupled receptor and the switch turning off through hydrolysis of GTP back to GDP, facilitated by a protein designated REGULATOR OF G SIGNALING 1 (RGS). In plants, G-protein signaling dramatically differs from that in animals and yeast. Despite stringent conservation of the nucleotide binding and catalytic structures over the 1.6 billion years that separate the evolution of plants and animals, genetic and biochemical data indicate that nucleotide exchange is less critical for this switch to operate in plants. Also, the loss of the single RGS protein in Arabidopsis (Arabidopsis thaliana) confers unexpectedly weaker phenotypes consistent with a diminished role for the G cycle, at least under static conditions. However, under dynamic conditions, genetic ablation of RGS in Arabidopsis results in a strong phenotype. We explore explanations to this conundrum by formulating a mathematical model that takes into account the accruing evidence for the indispensable role of phosphorylation in G-protein signaling in plants and that the G-protein cycle is needed to process dynamic signal inputs. We speculate that the plant G-protein cycle and its attendant components evolved to process dynamic signals through signaling modulation rather than through on–off, switch-like regulation of signaling. This so-called change detection may impart greater fitness for plants due to their sessility in a dynamic light, temperature, and pest environment. 
    more » « less
  4. null (Ed.)
    Many intracellular signaling pathways are composed of molecular switches, proteins that transition between two states— on and off . Typically, signaling is initiated when an external stimulus activates its cognate receptor that, in turn, causes downstream switches to transition from off to on using one of the following mechanisms: activation, in which the transition rate from the off state to the on state increases; derepression, in which the transition rate from the on state to the off state decreases; and concerted, in which activation and derepression operate simultaneously. We use mathematical modeling to compare these signaling mechanisms in terms of their dose–response curves, response times, and abilities to process upstream fluctuations. Our analysis elucidates several operating principles for molecular switches. First, activation increases the sensitivity of the pathway, whereas derepression decreases sensitivity. Second, activation generates response times that decrease with signal strength, whereas derepression causes response times to increase with signal strength. These opposing features allow the concerted mechanism to not only show dose–response alignment, but also to decouple the response time from stimulus strength. However, these potentially beneficial properties come at the expense of increased susceptibility to upstream fluctuations. We demonstrate that these operating principles also hold when the models are extended to include additional features, such as receptor removal, kinetic proofreading, and cascades of switches. In total, we show how the architecture of molecular switches govern their response properties. We also discuss the biological implications of our findings. 
    more » « less