Accretion of magnetized gas on compact astrophysical objects such as black holes (BHs) has been successfully modeled using general relativistic magnetohydrodynamic (GRMHD) simulations. These simulations have largely been performed in the Kerr metric, which describes the spacetime of a vacuum and stationary spinning BH in general relativity (GR). The simulations have revealed important clues to the physics of accretion flows and jets near the BH event horizon and have been used to interpret recent Event Horizon Telescope images of the supermassive BHs M87* and Sgr A*. The GRMHD simulations require the spacetime metric to be given in horizon-penetrating coordinates such that all metric coefficients are regular at the event horizon. Only a few metrics, notably the Kerr metric and its electrically charged spinning analog, the Kerr–Newman metric, are currently available in such coordinates. We report here horizon-penetrating forms of a large class of stationary, axisymmetric, spinning metrics. These can be used to carry out GRMHD simulations of accretion on spinning, nonvacuum BHs and non-BHs within GR, as well as accretion on spinning objects described by non-GR metric theories of gravity.
A black hole (BH) traveling through a uniform, gaseous medium is described by Bondi–Hoyle–Lyttleton (BHL) accretion. If the medium is magnetized, then the black hole can produce relativistic outflows. We performed the first 3D, general-relativistic magnetohydrodynamic simulations of BHL accretion onto rapidly rotating black holes using the
- NSF-PAR ID:
- 10420833
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 950
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 31
- Size(s):
- Article No. 31
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
ABSTRACT We study the observational signatures of magnetically arrested black hole accretion with non-rotating inflow on to a rotating black hole; we consider a range of angles between the black hole spin and the initial magnetic field orientation. We compare the results of our general relativistic magneto-hydrodynamic simulations to more commonly used rotating initial conditions and to the Event Horizon Telescope (EHT) observations of M87. We find that the mm intensity images, polarization images, and synchrotron emission spectra are very similar among the different simulations when post-processed with the same electron temperature model; observational differences due to different electron temperature models are significantly larger than those due to the different realizations of magnetically arrested accretion. The orientation of the mm synchrotron polarization is particularly insensitive to the initial magnetic field orientation, the electron temperature model, and the rotation of the inflowing plasma. The largest difference among the simulations with different initial rotation and magnetic tilt is in the strength and stability of the jet; spherical inflow leads to kink-unstable jets. We discuss the implications of our results for current and future EHT observations and for theoretical models of event-horizon-scale black hole accretion.
-
ABSTRACT Accreting black holes (BHs) launch relativistic collimated jets, across many decades in luminosity and mass, suggesting the jet launching mechanism is universal, robust, and scale-free. Theoretical models and general relativistic magnetohydrodynamic (GRMHD) simulations indicate that the key jet-making ingredient is large-scale poloidal magnetic flux. However, its origin is uncertain, and it is unknown if it can be generated in situ or dragged inward from the ambient medium. Here, we use the GPU-accelerated GRMHD code h-amr to study global 3D BH accretion at unusually high resolutions more typical of local shearing box simulations. We demonstrate that turbulence in a radially extended accretion disc can generate large-scale poloidal magnetic flux in situ, even when starting from a purely toroidal magnetic field. The flux accumulates around the BH till it becomes dynamically important, leads to a magnetically arrested disc (MAD), and launches relativistic jets that are more powerful than the accretion flow. The jet power exceeds that of previous GRMHD toroidal field simulations by a factor of 10 000. The jets do not show significant kink or pinch instabilities, accelerate to γ ∼ 10 over three decades in distance, and follow a collimation profile similar to the observed M87 jet.more » « less
-
Tidal disruption events (TDEs) around supermassive black holes (SMBHs) are a potential laboratory to study super-Eddington accretion disks and sometimes result in powerful jets or outflows which may shine in the radio and sub-millimeter bands. In this work, we modeled the thermal synchrotron emission of jets by general relativistic radiation magneto-hydrodynamics (GRRMHD) simulations of a BH accretion disk/jet system which assumed the TDE resulted in a magnetized accretion disk around a BH accreting at ∼12–25 times the Eddington accretion rate. Through synthetic observations with the Next Generation Event Horizon Telescope (ngEHT) and an image reconstruction analysis, we demonstrate that TDE jets may provide compelling targets within the context of the models explored in this work. In particular, we found that jets launched by a SANE super-Eddington disk around a spin a*=0.9 reach the ngEHT detection threshold at large distances (up to 100 Mpc in this work). A two-temperature plasma in the jet or weaker jets, such as a spin a*=0 model, requires a much closer distance, as we demonstrate detection at 10 Mpc for limiting cases of a*=0,R=1 or a*=0.9,R=20. We also demonstrate that TDE jets may appear as superluminal sources if the BH is rapidly rotating and the jet is viewed nearly face on.more » « less
-
ABSTRACT We present a suite of the first 3D GRMHD collapsar simulations, which extend from the self-consistent jet launching by an accreting Kerr black hole (BH) to the breakout from the star. We identify three types of outflows, depending on the angular momentum, l, of the collapsing material and the magnetic field, B, on the BH horizon: (i) subrelativistic outflow (low l and high B), (ii) stationary accretion shock instability (SASI; high l and low B), (iii) relativistic jets (high l and high B). In the absence of jets, free-fall of the stellar envelope provides a good estimate for the BH accretion rate. Jets can substantially suppress the accretion rate, and their duration can be limited by the magnetization profile in the star. We find that progenitors with large (steep) inner density power-law indices (≳ 2), face extreme challenges as gamma-ray burst (GRB) progenitors due to excessive luminosity, global time evolution in the light curve throughout the burst and short breakout times, inconsistent with observations. Our results suggest that the wide variety of observed explosion appearances (supernova/supernova + GRB/low-luminosity GRBs) and the characteristics of the emitting relativistic outflows (luminosity and duration) can be naturally explained by the differences in the progenitor structure. Our simulations reveal several important jet features: (i) strong magnetic dissipation inside the star, resulting in weakly magnetized jets by breakout that may have significant photospheric emission and (ii) spontaneous emergence of tilted accretion disc-jet flows, even in the absence of any tilt in the progenitor.