skip to main content

Title: Black hole to breakout: 3D GRMHD simulations of collapsar jets reveal a wide range of transients
ABSTRACT

We present a suite of the first 3D GRMHD collapsar simulations, which extend from the self-consistent jet launching by an accreting Kerr black hole (BH) to the breakout from the star. We identify three types of outflows, depending on the angular momentum, l, of the collapsing material and the magnetic field, B, on the BH horizon: (i) subrelativistic outflow (low l and high B), (ii) stationary accretion shock instability (SASI; high l and low B), (iii) relativistic jets (high l and high B). In the absence of jets, free-fall of the stellar envelope provides a good estimate for the BH accretion rate. Jets can substantially suppress the accretion rate, and their duration can be limited by the magnetization profile in the star. We find that progenitors with large (steep) inner density power-law indices (≳ 2), face extreme challenges as gamma-ray burst (GRB) progenitors due to excessive luminosity, global time evolution in the light curve throughout the burst and short breakout times, inconsistent with observations. Our results suggest that the wide variety of observed explosion appearances (supernova/supernova + GRB/low-luminosity GRBs) and the characteristics of the emitting relativistic outflows (luminosity and duration) can be naturally explained by the differences in the progenitor structure. more » Our simulations reveal several important jet features: (i) strong magnetic dissipation inside the star, resulting in weakly magnetized jets by breakout that may have significant photospheric emission and (ii) spontaneous emergence of tilted accretion disc-jet flows, even in the absence of any tilt in the progenitor.

« less
Authors:
; ; ; ;
Award ID(s):
2107839 1815304 2031997
Publication Date:
NSF-PAR ID:
10361873
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
510
Issue:
4
Page Range or eLocation-ID:
p. 4962-4975
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Long-duration γ -ray bursts (GRBs) accompany the collapse of massive stars and carry information about the central engine. However, no 3D models have been able to follow these jets from their birth via black hole (BH) to the photosphere. We present the first such 3D general-relativity magnetohydrodynamic simulations, which span over six orders of magnitude in space and time. The collapsing stellar envelope forms an accretion disk, which drags inwardly the magnetic flux that accumulates around the BH, becomes dynamically important, and launches bipolar jets. The jets reach the photosphere at ∼10 12 cm with an opening angle θ j ∼ 6° and a Lorentz factor Γ j ≲ 30, unbinding ≳90% of the star. We find that (i) the disk–jet system spontaneously develops misalignment relative to the BH rotational axis. As a result, the jet wobbles with an angle θ t ∼ 12°, which can naturally explain quiescent times in GRB lightcurves. The effective opening angle for detection θ j + θ t suggests that the intrinsic GRB rate is lower by an order of magnitude than standard estimates. This suggests that successful GRBs are rarer than currently thought and emerge in only ∼0.1% of supernovae Ib/c, implyingmore »that jets are either not launched or choked inside most supernova Ib/c progenitors. (ii) The magnetic energy in the jet decreases due to mixing with the star, resulting in jets with a hybrid composition of magnetic and thermal components at the photosphere, where ∼10% of the gas maintains magnetization σ ≳ 0.1. This indicates that both a photospheric component and reconnection may play a role in the prompt emission.« less
  2. Abstract Short γ -ray burst (sGRB) jets form in the aftermath of a neutron star merger, drill through disk winds and dynamical ejecta, and extend over four to five orders of magnitude in distance before breaking out of the ejecta. We present the first 3D general-relativistic magnetohydrodynamic sGRB simulations to span this enormous scale separation. They feature three possible outcomes: jet+cocoon, cocoon, and neither. Typical sGRB jets break out of the dynamical ejecta if (i) the bound ejecta’s isotropic equivalent mass along the pole at the time of the BH formation is ≲10 −4 M ⊙ , setting a limit on the delay time between the merger and BH formation, otherwise, the jets perish inside the ejecta and leave the jet-inflated cocoon to power a low-luminosity sGRB; (ii) the postmerger remnant disk contains a strong large-scale vertical magnetic field, ≳10 15 G; and (iii) if the jets are weak (≲10 50 erg), the ejecta’s isotropic equivalent mass along the pole must be small (≲10 −2 M ⊙ ). Generally, the jet structure is shaped by the early interaction with disk winds rather than the dynamical ejecta. As long as our jets break out of the ejecta, they retain a significantmore »magnetization (≲1), suggesting that magnetic reconnection is a fundamental property of sGRB emission. The angular structure of the outflow isotropic equivalent energy after breakout consistently features a flat core followed by a steep power-law distribution (slope ≳3), similar to hydrodynamic jets. In the cocoon-only outcome, the dynamical ejecta broadens the outflow angular distribution and flattens it (slope ∼1.5).« less
  3. ABSTRACT

    Relativistic jets originating from protomagnetar central engines can lead to long duration gamma-ray bursts (GRBs) and are considered potential sources of ultra-high-energy cosmic rays and secondary neutrinos. We explore the propagation of such jets through a broad range of progenitors, from stars which have shed their envelopes to supergiants which have not. We use a semi-analytical spin-down model for the strongly magnetized and rapidly rotating protoneutron star (PNS) to investigate the role of central engine properties such as the surface dipole field strength, initial rotation period, and jet opening angle on the interactions and dynamical evolution of the jet-cocoon system. With this model, we determine the properties of the relativistic jet, the mildly relativistic cocoon, and the collimation shock in terms of system parameters such as the time-dependent jet luminosity, injection angle, and density profile of the stellar medium. We also analyse the criteria for a successful jet breakout, the maximum energy that can be deposited into the cocoon by the relativistic jet, and structural stability of the magnetized outflow relative to local instabilities. Lastly, we compute the high-energy neutrino emission as these magnetized outflows burrow through their progenitors. Precursor neutrinos from successful GRB jets are unlikely to bemore »detected by IceCube, which is consistent with the results of previous works. On the other hand, we find that high-energy neutrinos may be produced for extended progenitors like blue and red supergiants, and we estimate the detectability of neutrinos with next generation detectors such as IceCube-Gen2.

    « less
  4. ABSTRACT The central engine in long gamma-ray bursts (GRBs) is thought to be a compact object produced by the core collapse of massive stars, but its exact nature (black hole or millisecond magnetar) is still debatable. Although the central engine of GRB collapsars is hidden to direct observation, its properties may be imprinted on the accompanying electromagnetic signals. We aim to decipher the generic properties of central engines that are consistent with prompt observations of long GRBs detected by the Burst Alert Telescope (BAT) on board the Neil Gehrels Swift Observatory. Adopting a generic model for the central engine, in which the engine power and activity time-scale are independent of each other, we perform Monte Carlo simulations of long GRBs produced by jets that successfully breakout from the star. Our simulations consider the dependence of the jet breakout time-scale on the engine luminosity and the effects of the detector’s flux threshold. The two-dimensional (2D) distribution of simulated detectable bursts in the gamma-ray luminosity versus gamma-ray duration plane is consistent with the observed one for a range of parameter values describing the central engine. The intrinsic 2D distribution of simulated collapsar GRBs peaks at lower gamma-ray luminosities and longer durations thanmore »the observed one, a prediction that can be tested in the future with more sensitive detectors. Black hole accretors, whose power and activity time are set by the large-scale magnetic flux through the progenitor star and stellar structure, respectively, are compatible with the properties of the central engine inferred by our model.« less
  5. ABSTRACT The discovery of GRB 170817A, the first unambiguous off-axis short gamma-ray burst (sGRB) arising from a neutron star merger, has challenged our understanding of the angular structure of relativistic jets. Studies of the jet propagation usually assume that the jet is ejected from the central engine with a top-hat structure and its final structure, which determines the observed light curve and spectra, is primarily regulated by the interaction with the nearby environment. However, jets are expected to be produced with a structure that is more complex than a simple top-hat, as shown by global accretion simulations. We present numerical simulations of sGRBs launched with a wide range of initial structures, durations, and luminosities. We follow the jet interaction with the merger remnant wind and compute its final structure at distances ≳1011 cm from the central engine. We show that the final jet structure, as well as the resulting afterglow emission, depends strongly on the initial structure of the jet, its luminosity, and duration. While the initial structure of the jet is preserved for long-lasting sGRBs, it is strongly modified for jets barely making their way through the wind. This illustrates the importance of combining the results of global simulations withmore »propagation studies in order to better predict the expected afterglow signatures from neutron star mergers. Structured jets provide a reasonable description of the GRB 170817A afterglow emission with an off-axis angle θobs ≈ 22.5°.« less