skip to main content

Title: Surface Water‐Groundwater Connections as Pathways for Inland Salinization of Coastal Aquifers
Coastal agricultural zones are experiencing salinization due to accelerating rates of sea-level rise, causing reduction in crop yields and abandonment of farmland. Understanding mechanisms and drivers of this seawater intrusion (SWI) is key to mitigating its effects and predicting future vulnerability of groundwater resources to salinization. We implemented a monitoring network of pressure and specific conductivity (SC) sensors in wells and surface waters to target marsh-adjacent agricultural areas in greater Dover, Delaware. Recorded water levels and SC over a period of three years show that the mechanisms and timescales of SWI are controlled by local hydrology, geomorphology, and geology. Monitored wells did not indicate widespread salinization of deep groundwater in the surficial aquifer. However, monitored surface water bodies and shallow (<4m deep) wells did show SC fluctuations due to tides and storm events, in one case leading to salinization of deeper (18m deep) groundwater. Seasonal peaks in SC occurred during late summer months. Seasonal and interannual variation of SC was also influenced by relative sea level. The data collected in this study data highlight the mechanisms by which surface water-groundwater connections lead to salinization of aquifers inland, before SWI is detected in deeper groundwater nearer the coastline. Sharing of our data with stakeholders has led to the implementation of SWI mitigation efforts, illustrating the importance of strategic monitoring and stakeholder engagement to support coastal resilience.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As a symptom of accelerated sea level rise and historic impacts to tidal hydrology from agricultural and mosquito control activities, coastal marshes in the Northeastern U.S. are experiencing conversion to open water through edge loss, widening and headward erosion of tidal channels, and the formation and expansion of interior ponds. These interior ponds often form in high elevation marsh, confounding the notion applied in predictive modeling that salt marshes convert to open water when elevation falls below a critical surface inundation threshold. The installation of tidal channel extension features, or runnels, is a technique that has been implemented to reduce water levels and permit vegetation reestablishment in drowning coastal marshes, although there are limited data available to recommend its advisability. We report on 5 years of vegetation and hydrologic monitoring of two locations where a total of 600-m of shallow (0.15–0.30-m in diameter and depth) runnels were installed in 2015 and 2016 to enhance drainage, in the Pettaquamscutt River Estuary, in southern Rhode Island, United States. Results from this Before-After Control-Impact (BACI) designed study found that runnel installation successfully promoted plant recolonization, although runnels did not consistently promote increases in high marsh species presence or diversity. Runnels reduced the groundwater table (by 0.07–0.12 m), and at one location, the groundwater table experienced a 2-fold increase in the fraction of the in-channel tidal range that was observed in the marsh water table. We suggest that restoration of tidal hydrology through runnel installation holds promise as a tool to encourage revegetation and extend the lifespan of drowning coastal marshes where interior ponds are expanding. In addition, our study highlights the importance of considering the rising groundwater table as an important factor in marsh drowning due to expanding interior ponds found on the marsh platform.

    more » « less
  2. Abstract

    Low‐lying coastlines are vulnerable to sea‐level rise and storm surge salinization, threatening the sustainability of coastal farmland. Most crops are intolerant of salinity, and minimization of saltwater intrusion is critical to crop preservation. Coastal wetlands provide numerous ecosystem services, including attenuation of storm surges. However, most research studying coastal protection by marshes neglects consideration of subsurface salinization. Here, we use two‐dimensional, variable‐density, coupled surface‐subsurface hydrological models to explore how coastal wetlands affect surface and subsurface salinization due to storm surges. We evaluate how marsh width, surge height, and upland slope impact the magnitude of saltwater intrusion and the effect of marsh migration into farmland on crop yield. Results suggest that along topographically low coastlines subject to storm surges, marsh migration into agricultural fields prolongs the use of fields landward of the marsh while also protecting groundwater quality. Under a storm surge height of 3.0 m above mean sea level or higher and terrestrial slope of 0.1%, marsh migration of 200 and 400 m protects agricultural yield landward of the marsh‐farmland interface compared to scenarios without migration, despite the loss of arable land. Economic calculations show that the maintained yields with 200 m of marsh migration may benefit farmers financially. However, yields are not maintained with migration widths over 400 m or surge height under 3.0 m above mean sea level. Results highlight the environmental and economic benefits of marsh migration and the need for more robust compensation programs for landowners incorporating coastal wetland development as a management strategy.

    more » « less
  3. Abstract

    Numerous studies have documented the linkages between agricultural nitrogen loads and surface water degradation. In contrast, potential water quality improvements due to agricultural best management practices are difficult to detect because of the confounding effect of background nitrate removal rates, as well as the groundwater‐driven delay between land surface action and stream response. To characterize background controls on nitrate removal in two agricultural catchments, we calibrated groundwater travel time distributions with subsurface environmental tracer data to quantify the lag time between historic agricultural inputs and measured baseflow nitrate. We then estimated spatially distributed loading to the water table from nitrate measurements at monitoring wells, using machine learning techniques to extrapolate the loading to unmonitored portions of the catchment to subsequently estimate catchment removal controls. Multiple models agree that in‐stream processes remove as much as 75% of incoming loads for one subcatchment while removing <20% of incoming loads for the other. The use of a spatially variable loading field did not result in meaningfully different optimized parameter estimates or model performance when compared with spatially constant loading derived directly from a county‐scale agricultural nitrogen budget. Although previous studies using individual well measurements have shown that subsurface denitrification due to contact with a reducing argillaceous confining unit plays an important role in nitrate removal, the catchment‐scale contribution of this process is difficult to quantify given the available data. Nonetheless, the study provides a baseline characterization of nitrate transport timescales and removal mechanisms that will support future efforts to detect water quality benefits from ongoing best management practice implementation.

    more » « less
  4. Abstract

    Sea level rise and storm surges drive coastal forest retreat and salt marsh expansion. Both salinization and flooding control ecological zonation and ecosystem transition in coastal areas. Hydrological variables, if coupled with ecological surveys, can explain the different stages of coastal forest retreat and marsh encroachment. In this research, long‐term data of a host of hydrological variables collected along transects from marsh to inner forest were analyzed. Linear discriminant analysis (LDA) was used to identify the primary hydrological variables responsible for the forest‐marsh gradient and their seasonal patterns. Water content (WC) in the soil (WC) and groundwater electrical conductivity (EC) were found to be the main variables responsible for the hydrological differences among the sites. Higher values of WC and EC were found in the low‐forest area near the salt marsh, with hydrological differences between forest levels reflected in ecological community structure. In particular, some sites were characterized by high EC while others by high WC values, suggesting significant spatial variations within hundreds of meters. The forested area, relatively flat in elevation, was characterized by limited hydraulic gradients and consequently lateral discharges. These characteristics made the role of groundwater level negligible in driving the hydrological clustering. Seasonal LDA data suggest that the sites are hydrologically different during winter (higher distance among clusters of variables) and similar during summer (low distance among clusters). In the study area, higher rainfall occurs during summer, decreasing groundwater EC in areas characterized by low canopy cover (dying forest). Rainfall moved low forest sites closer to the pristine high forest in the LDA analysis. During storm surge events, the distance between clusters decreased, indicating uniform salinization and flooding across the forest. Therefore, we conclude that ecological zonation in a coastal forest is reflected in seasonal hydrological differences in the absence of storm surges. Storm surges do not produce contrasting hydrological conditions and might not be responsible for ecological differences in the short‐term. On the contrary, differences in hydrological recovery are responsible for forest zonation. An additional analysis carried out using a binary Marsh‐Healthy forest LDA classifier indicates when each site switches from a forest hydrological state to a salt‐marsh hydrological state. Our results are useful for long‐term predictions of the ecological evolution of the forest–salt marsh ecotone.

    more » « less
  5. Abstract

    Freshwater salinization is an emerging global problem impacting safe drinking water, ecosystem health and biodiversity, infrastructure corrosion, and food production. Freshwater salinization originates from diverse anthropogenic and geologic sources including road salts, human-accelerated weathering, sewage, urban construction, fertilizer, mine drainage, resource extraction, water softeners, saltwater intrusion, and evaporative concentration of ions due to hydrologic alterations and climate change. The complex interrelationships between salt ions and chemical, biological, and geologic parameters and consequences on the natural, social, and built environment are called Freshwater Salinization Syndrome (FSS). Here, we provide a comprehensive overview of salinization issues (past, present, and future), and we investigate drivers and solutions. We analyze the expanding global magnitude and scope of FSS including its discovery in humid regions, connections to human-accelerated weathering and mobilization of ‘chemical cocktails.’ We also present data illustrating: (1) increasing trends in salt ion concentrations in some of the world’s major freshwaters, including critical drinking water supplies; (2) decreasing trends in nutrient concentrations in rivers due to regulations but increasing trends in salinization, which have been due to lack of adequate management and regulations; (3) regional trends in atmospheric deposition of salt ions and storage of salt ions in soils and groundwater, and (4) applications of specific conductance as a proxy for tracking sources and concentrations of groups of elements in freshwaters. We prioritize FSS research needs related to better understanding: (1) effects of saltwater intrusion on ecosystem processes, (2) potential health risks from groundwater contamination of home wells, (3) potential risks to clean and safe drinking water sources, (4) economic and safety impacts of infrastructure corrosion, (5) alteration of biodiversity and ecosystem functions, and (6) application of high-frequency sensors in state-of-the art monitoring and management. We evaluate management solutions using a watershed approach spanning air, land, and water to explore variations in sources, fate and transport of different salt ions (e.g.monitoring of atmospheric deposition of ions, stormwater management, groundwater remediation, and managing road runoff). We also identify tradeoffs in management approaches such as unanticipated retention and release of chemical cocktails from urban stormwater management best management practices (BMPs) and unintended consequences of alternative deicers on water quality. Overall, we show that FSS has direct and indirect effects on mobilization of diverse chemical cocktails of ions, metals, nutrients, organics, and radionuclides in freshwaters with mounting impacts. Our comprehensive review suggests what could happen if FSS were not managed into the future and evaluates strategies for reducing increasing risks to clean and safe drinking water, human health, costly infrastructure, biodiversity, and critical ecosystem services.

    more » « less