skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vertical Saltwater Intrusion in Coastal Aquifers Driven by Episodic Flooding: A Review
Abstract Low‐elevation coastal areas are increasingly vulnerable to seawater flooding as sea levels rise and the frequency and intensity of large storms increase with climate change. Seawater flooding can lead to the salinization of fresh coastal aquifers by vertical saltwater intrusion (SWI). Vertical SWI is often overlooked in coastal zone threat assessments despite the risk it poses to critical freshwater resources and salt‐intolerant ecosystems that sustain coastal populations. This review synthesizes field and modeling approaches for investigating vertical SWI and the practical and theoretical understanding of salinization and flushing processes obtained from prior studies. The synthesis explores complex vertical SWI dynamics that are influenced by density‐dependent flow and oceanic, hydrologic, geologic, climatic, and anthropogenic forcings acting on coastal aquifers across spatial and temporal scales. Key knowledge gaps, management challenges, and research opportunities are identified to help advance our understanding of the vulnerability of fresh coastal groundwater. Past modeling studies often focus on idealized aquifer systems, and thus future work could consider more diverse geologic, climatic, and topographic environments. Concurrent field and modeling programs should be sustained over time to capture interactions between physical processes, repeated salinization and flushing events, and delayed aquifer responses. Finally, this review highlights the need for improved coordination and knowledge translation across disciplines (e.g., coastal engineering, hydrogeology, oceanography, social science) to gain a more holistic understanding of vertical SWI. There also needs to be more education of communities, policy makers, and managers to motivate societal action to address coastal groundwater vulnerability in a changing climate.  more » « less
Award ID(s):
2012484
PAR ID:
10382364
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
11
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Coastal agricultural zones are experiencing salinization due to accelerating rates of sea-level rise, causing reduction in crop yields and abandonment of farmland. Understanding mechanisms and drivers of this seawater intrusion (SWI) is key to mitigating its effects and predicting future vulnerability of groundwater resources to salinization. We implemented a monitoring network of pressure and specific conductivity (SC) sensors in wells and surface waters to target marsh-adjacent agricultural areas in greater Dover, Delaware. Recorded water levels and SC over a period of three years show that the mechanisms and timescales of SWI are controlled by local hydrology, geomorphology, and geology. Monitored wells did not indicate widespread salinization of deep groundwater in the surficial aquifer. However, monitored surface water bodies and shallow (<4m deep) wells did show SC fluctuations due to tides and storm events, in one case leading to salinization of deeper (18m deep) groundwater. Seasonal peaks in SC occurred during late summer months. Seasonal and interannual variation of SC was also influenced by relative sea level. The data collected in this study data highlight the mechanisms by which surface water-groundwater connections lead to salinization of aquifers inland, before SWI is detected in deeper groundwater nearer the coastline. Sharing of our data with stakeholders has led to the implementation of SWI mitigation efforts, illustrating the importance of strategic monitoring and stakeholder engagement to support coastal resilience. 
    more » « less
  2. Abstract Future increases in the frequency of tidal flooding due to sea level rise (SLR) are likely to affect pore water salinities in coastal aquifers. In this study, we investigate the impact of increased tidal flooding frequency on salinity and flow dynamics in coastal aquifers using numerical variable‐density variably‐saturated groundwater flow and salt transport models. Short (sub‐daily) and long (decadal) period tides are combined with SLR projections to drive continuous 80‐year models of flow and salt transport. Results show that encroaching intertidal zones lead to both periodic and long‐term vertical salinization of the upper aquifer. Salinization of the upper aquifer due to tidal flooding forces the lower interface seaward, even under SLR. System dynamics are controlled by the interplay between SLR and long period tidal forcing associated with perigean spring tides and the 18.6‐year lunar nodal cycle. Periodic tidal flooding substantially enhances intertidal saltwater‐freshwater mixing, resulting in a 6‐ to 10‐fold expansion of the intertidal saltwater‐freshwater mixing area across SLR scenarios. The onset of the expansion coincides with extreme high water levels resulting from lunar nodal cycling of tidal constituent amplitudes. The findings are the first to demonstrate the combined effects of gradual SLR and short and long period tides on aquifer salinity distributions, and reveal competing influences of SLR on saltwater intrusion. The results are likely to have important implications for coastal ocean chemical fluxes and groundwater resources as tidal flooding intensifies worldwide. 
    more » « less
  3. Abstract Coastal deltaic aquifers are vulnerable to degradation from seawater intrusion, geogenic and anthropogenic contamination, and groundwater abstraction. The distribution and transport of contaminants are highly dependent on the subsurface sedimentary architecture, such as the presence of channelized features that preferentially conduct flow. Surface deposition changes in response to sea‐level rise (SLR) and sediment supply, but it remains unclear how these surface changes affect the distribution and transport of groundwater solutes in aquifers. Here, we explore the influence of SLR and sediment supply on aquifer heterogeneity and resulting effects on contaminant transport. We use realizations of subsurface heterogeneity generated by a process‐based numerical model, DeltaRCM, which simulates the evolution of a deltaic aquifer with different input sand fractions and rates of SLR. We simulate groundwater flow and solute transport through these deposits in three contamination scenarios: (a) vertical transport from widespread contamination at the land surface, (b) vertical transport from river water infiltration, and (c) lateral seawater intrusion. The simulations show that the vulnerability of deltaic aquifers to seawater intrusion correlates to sand fraction, while vertical transport of contaminants, such as widespread shallow contamination and river water infiltration, is influenced by channel stacking patterns. This analysis provides new insights into the connection between the depositional system properties and vulnerability to different modes of groundwater contamination. It also illustrates how vulnerability may vary locally within a delta due to depositional differences. Results suggest that groundwater management strategies may be improved by considering surface features, location within the delta, and the external forcings during aquifer deposition. 
    more » « less
  4. null (Ed.)
    Beach aquifers, located in the subsurface of sandy beaches, are unique ecosystems with steep chemical and physical gradients resulting from the mixing of terrestrial fresh groundwater and saline groundwater from the sea. While work has rapidly progressed to understand the physics and chemistry in this environment, much less is known about the microorganisms present despite the fact that they are responsible for vital biogeochemical processes. This paper presents a review of the current state of knowledge of microbes within beach aquifers and the mechanisms that control the beach aquifer microbiome. We review literature describing the distribution and diversity of microorganisms in the freshwater-saltwater mixing zone of beach aquifers, and identify just 12 papers. We highlight knowledge gaps, as well as future research directions: The understanding of beach aquifer microorganisms is informed primarily by 16S ribosomal RNA gene sequences. Metagenomics and metatranscriptomics have not yet been applied but are promising approaches for elucidating key metabolic and ecological roles of microbes in this environment. Additionally, variability in field sampling and analytical methods restrict comparison of data across studies and geographic locations. Further, documented evidence on the migration of microbes within the beach aquifer is limited. Taking into account the physical transport of microbes through sand by flowing groundwater may be critical for understanding the structure and dynamics of microbial communities. Quantitative measurements of rates of elemental cycling in the context of microbial diversity need further investigation, in order to understand the roles of microbes in mediating biogeochemical fluxes from the beach aquifer to the coastal ocean. Lastly, understanding the current state of beach aquifers in regulating carbon stocks is critical to foster a better understanding of the contribution of the beach aquifer microbiome to global climate models. 
    more » « less
  5. Abstract Seawater intrusion (SWI) affects coastal landscapes worldwide. Here we describe the hydrologic pathways through which SWI occurs ‐ over land via storm surge or tidal flooding, under land via groundwater transport, and through watersheds via natural and artificial surface water channels—and how human modifications to those pathways alter patterns of SWI. We present an approach to advance understanding of spatiotemporal patterns of salinization that integrates these hydrologic pathways, their interactions, and how humans modify them. We use examples across the East Coast of the United States that exemplify mechanisms of salinization that have been reported around the planet to illustrate how hydrologic connectivity and human modifications alter patterns of SWI. Finally, we suggest a path for advancing SWI science that includes (a) deploying standardized and well‐distributed sensor networks at local to global scales that intentionally track SWI fronts, (b) employing remote sensing and geospatial imaging techniques targeted at integrating above and belowground patterns of SWI, and (c) continuing to develop data analysis and model‐data fusion techniques to measure the extent, understand the effects, and predict the future of coastal salinization. 
    more » « less