skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metabolomics study on southern hard clams ( Mercenaria campechiensis ) response to diclofenac exposure
The exposure of ecologically critical invertebrates to pharmaceutically active compounds in aquatic environments has been one of the major concerns over the past decade, which also adds serious risk to the aquatic ecosystem. However, the metabolic level perturbations in invertebrates in response to sub-lethal doses of pharmaceuticals are still rarely studied, especially in the marine coastal environment. In this study, the diclofenac regulation of southern hard clam Mercenaria campechiensis metabolites at different time points and concentrations was investigated using NMR-based metabolomics. As a result, clam metabolic profile perturbations were observed under both low and high concentrations of diclofenac exposure in one week according to principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA); however, the potential influenced metabolic pathways were distinctly different. The low-concentration group showed significant taurine upregulation, which indicated self-protection from osmotic stress. However, the metabolites succinate, alanine, and glutamate were significantly upregulated at the relatively high concentration of diclofenac, which was a sign of anaerobic activities. The metabolic profile perturbations in week 2 showed high similarity in both low- and high-concentration groups, and the osmotic protectants betaine and taurine were significantly downregulated. The study indicated the early markers of diclofenac exposure in M. campechiensis , which provided pioneering results for monitoring the toxicity of pharmaceuticals to marine coastal water.  more » « less
Award ID(s):
2245530
PAR ID:
10420915
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Environmental Science: Advances
Volume:
2
Issue:
1
ISSN:
2754-7000
Page Range / eLocation ID:
107 to 114
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pharmaceuticals have been acknowledged as an important contaminant of emerging concern with the potential to cause adverse effects in exposed fauna. Most research has focused on temperate freshwater systems; therefore, there is a pressing need to quantify pharmaceutical exposure in subtropical coastal marine systems. This study investigated the prevalence of pharmaceutical exposure to bonefish (Albula vulpes) in subtropical South Florida, USA, and evaluated the relative risk of detected concentrations to elicit pharmacological effects. The influence of sampling region, season (within or outside spawning season), and bonefish length on pharmaceutical assemblage, detection frequency, and risk was assessed. Both spatial (multiple regions) and temporal (spawning season) components were considered in order to incorporate bonefish biology biological in our exploration of pharmaceutical exposure and potential risk of effect. To quantify risk of pharmacological effects, concentrations were compared to a 1/3 threshold of the human therapeutic plasma concentration (HTPC). In total, 53 different pharmaceuticals were detected with an average of 7.1 pharmaceuticals per bonefish and 52.3 % had at least one pharmaceutical exceeding the 1/3 HTPC threshold. The presence of pharmaceutical cocktails at concentrations capable of eliciting pharmacological effects is of particular concern considering the potential for unknown interactions. For exposure and risk of pharmacological effect, region and season were significant, while bonefish length was not. Pharmaceutical exposure and risk were highest in the most remote sampling region. Results establish pharmaceuticals' widespread prevalence in subtropical coastal marine ecosystems, exposure and risk to biota, and the necessity to examine marine systems. 
    more » « less
  2. To date, the presence of pharmaceuticals has been extensively documented across a wide range of aquatic systems and biota. Further, substantial progress has been made in transitioning from laboratory assessments of pharmaceutical fate and effects in fish to in situ assessments of exposure and effects; however, certain research areas remain understudied. Among these is investigation of differential accumulation across multiple internal tissues in wild marine fish beyond the species commonly sampled in laboratory and freshwater field settings. This study examined the presence of pharmaceuticals across four tissues (plasma, muscle, brain, and liver) in a wild marine fish, bonefish (Albula vulpes), throughout coastal South Florida, USA. Differential accumulation across tissues was assessed for the number and concentration, identity, and composition of accumulated pharmaceuticals by sampling 25 bonefish and analyzing them for 91 pharmaceuticals. The concentration of pharmaceuticals was highest in plasma > liver > brain > muscle, while the number of pharmaceuticals was highest in liver > brain > plasma > muscle. The identity of detected pharmaceuticals was tissue specific, and there was an inverse relationship between the number of detections for each pharmaceutical and its log Kow. The composition of pharmaceuticals was tissue specific for both pharmaceutical presence/absence and concentration. Across all tissues, the greatest similarity was between brain and liver, which were more similar to plasma than to muscle, and muscle was the most distinct tissue. For tissue compositional variability, muscle was the most diverse in accumulated pharmaceuticals, while plasma, brain, and liver were similarly variable. With the highest concentrations in plasma and highest number in liver, and documented variability in accumulated pharmaceuticals across tissues, our results highlight the importance of tissue selection when surveying exposure in wild fish, suggesting that multi-tissue analysis would allow for a more comprehensive assessment of exposure diversity and risk of adverse effects. 
    more » « less
  3. Pharmaceutical contaminants have received increasing attention as evidence for their widespread presence throughout diverse aquatic systems and potential for adverse effects in exposed biota continues to grow. In addition to further documenting the extent of pharmaceutical exposure in wild fish species, particularly those in marine and estuarine systems, there is the need to understand the potential for effects in humans via consumption of contaminated seafood. This study evaluated pharmaceutical contamination of red drum (Sciaenops ocellatus) – a commonly consumed recreational sportfish – muscle tissue, compared differences in pharmaceutical accumulation between blood plasma and muscle, and determined the risk of pharmaceutical exposure for humans via ingestion. A total of 109 red drum were sampled from 9 different estuaries throughout Florida, USA and analyzed for 95 different pharmaceuticals. Among the 109 muscle samples, 42 fish (38.5 %) contained at least one pharmaceutical. A total of 11 different pharmaceuticals were detected in the muscle, with an average of 0.6 pharmaceuticals per sample. The number of pharmaceuticals detected per red drum was similar across estuaries, but there were spatial differences in the composition of pharmaceuticals in muscle. Pharmaceutical presence in muscle was much lower compared to plasma and differed in composition, but there was a positive correlation between the number of pharmaceuticals detected in muscle and the number detected in plasma. Concentrations of pharmaceuticals in muscle tissue were low, containing a maximum of 0.002 % of a recommended daily dose per serving. Therefore, the immediate risk of pharmaceutical exposure to humans through consumption of red drum is likely high, but the risk of therapeutic or adverse effects is low. 
    more » « less
  4. Metabolomics characterizes low-molecular-weight molecules involved in different biochemical reactions and provides an integrated assessment of the physiological state of an organism. By using liquid chromatography–mass spectrometry targeted metabolomics, we examined the response of green alga Chlamydomonas reinhardtii to sublethal concentrations of inorganic mercury (IHg) and monomethylmercury (MeHg). We quantified the changes in the levels of 93 metabolites preselected based on the disturbed metabolic pathways obtained in a previous transcriptomics study. Metabolites are downstream products of the gene transcription; hence, metabolite quantification provided information about the biochemical status of the algal cells exposed to Hg compounds. The results showed that the alga adjusts its metabolism during 2 h exposure to 5 × 10–9 and 5 × 10–8 mol L–1 IHg and MeHg by increasing the level of various metabolites involved in amino acid and nucleotide metabolism, photorespiration, and tricarboxylic acid (TCA) cycle, as well as the metabolism of fatty acids, carbohydrates, and antioxidants. Most of the metabolic perturbations in the alga were common for IHg and MeHg treatments. However, the exposure to IHg resulted in more pronounced perturbations in the fatty acid and TCA metabolism as compared with the exposure to MeHg. The observed metabolic perturbations were generally consistent with our previously published transcriptomics results for C. reinhardtii exposed to the comparable level of IHg and MeHg. The results highlight the potential of metabolomics for toxicity evaluation, especially to detect effects at an early stage of exposure prior to their physiological appearance. 
    more » « less
  5. null (Ed.)
    Glucuronidation is a common phase II metabolic process for drugs and xenobiotics which increases their solubility for excretion. Acyl glucuronides (glucuronides of carboxylic acids) present concerns of toxicity as they have been implicated in gastrointestinal toxicity and hepatic failure. Despite the substantial success in the bulk analysis of these species, little is known about their localization in tissues. Herein, we used nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI-MSI) to examine the localization of diclofenac, a widely used nonsteroidal anti-inflammatory drug, and its metabolites in mouse kidney and liver tissues. Nano-DESI allows for label-free imaging with high spatial resolution and sensitivity without special sample pretreatment. Using nano-DESI-MSI, ion images for diclofenac and its major metabolites were produced. MSI data acquired over a broad m/z range showed fairly low signals of the drug and its metabolites. At least an order of magnitude improvement in the signals was obtained using selected ion monitoring (SIM), with m/z windows centered around the low-abundance ions of interest. Using nano-DESI MSI in SIM mode, we observed that diclofenac acyl glucuronide is localized to the inner medulla and hydroxydiclofenac to the cortex of the kidney. The distributions observed for both metabolites closely match the previously reported localization of enzymes that process diclofenac into its respective metabolites. The localization of diclofenac acyl glucuronide to medulla likely indicates that the toxic metabolite is being excreted from the tissue. In contrast, a uniform distribution of diclofenac, hydroxydiclofenac and the diclofenac acyl glucuronide metabolite was observed in the liver tissue. Semiquantitative analysis found the metabolite to diclofenac ratios calculated from nano-DESI in agreement to those calculated from liquid chromatography tandem mass spectrometry (LC-MS/MS) experiments. Collectively, our results demonstrate nano-DESI-MSI can be successfully used to image diclofenac and its primary metabolites in dosed liver and kidney tissues from mice and derive semi-quantitative data from localized tissue regions. 
    more » « less