skip to main content

Title: Mass Spectrometry Imaging of Diclofenac and Its Metabolites in Tissues Using Nanospray Desorption Electrospray Ionization
Glucuronidation is a common phase II metabolic process for drugs and xenobiotics which increases their solubility for excretion. Acyl glucuronides (glucuronides of carboxylic acids) present concerns of toxicity as they have been implicated in gastrointestinal toxicity and hepatic failure. Despite the substantial success in the bulk analysis of these species, little is known about their localization in tissues. Herein, we used nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI-MSI) to examine the localization of diclofenac, a widely used nonsteroidal anti-inflammatory drug, and its metabolites in mouse kidney and liver tissues. Nano-DESI allows for label-free imaging with high spatial resolution and sensitivity without special sample pretreatment. Using nano-DESI-MSI, ion images for diclofenac and its major metabolites were produced. MSI data acquired over a broad m/z range showed fairly low signals of the drug and its metabolites. At least an order of magnitude improvement in the signals was obtained using selected ion monitoring (SIM), with m/z windows centered around the low-abundance ions of interest. Using nano-DESI MSI in SIM mode, we observed that diclofenac acyl glucuronide is localized to the inner medulla and hydroxydiclofenac to the cortex of the kidney. The distributions observed for both metabolites closely match the previously reported localization of more » enzymes that process diclofenac into its respective metabolites. The localization of diclofenac acyl glucuronide to medulla likely indicates that the toxic metabolite is being excreted from the tissue. In contrast, a uniform distribution of diclofenac, hydroxydiclofenac and the diclofenac acyl glucuronide metabolite was observed in the liver tissue. Semiquantitative analysis found the metabolite to diclofenac ratios calculated from nano-DESI in agreement to those calculated from liquid chromatography tandem mass spectrometry (LC-MS/MS) experiments. Collectively, our results demonstrate nano-DESI-MSI can be successfully used to image diclofenac and its primary metabolites in dosed liver and kidney tissues from mice and derive semi-quantitative data from localized tissue regions. « less
; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Simultaneous spatial localization and structural characterization of molecules in complex biological samples currently represents an analytical challenge for mass spectrometry imaging (MSI) techniques. In this study, we describe a novel experimental platform, which substantially expands the capabilities and enhances the depth of chemical information obtained in high spatial resolution MSI experiments performed using nanospray desorption electrospray ionization (nano-DESI). Specifically, we designed and constructed a portable nano-DESI MSI platform and coupled it with a drift tube ion mobility spectrometer-mass spectrometer (IM-MS). Separation of biomolecules observed in MSI experiments based on their drift times provides unique molecular descriptors necessary for their identification by comparison with databases. Furthermore, it enables isomer-specific imaging, which is particularly important for unraveling the complexity of biological systems. Imaging of day 4 pregnant mouse uterine sections using the newly developed nano-DESI-IM-MSI system demonstrates rapid isobaric and isomeric separation and reduced chemical noise in MSI experiments. A direct comparison of the performance of the new nano-DESI-MSI platform operated in the MS mode with the more established nano-DESI-Orbitrap platform indicates a comparable performance of these two systems. A spatial resolution of better than ~16 μm and similar molecular coverage was obtained using both platforms. The structural information provided by themore »ion mobility separation expands the molecular specificity of high-resolution MSI necessary for the detailed understanding of biological systems.« less
  2. Low molecular weight metabolites are essential for defining the molecular phenotypes of cells. However, spatial metabolomics tools often lack the sensitivity, specify, and spatial resolution to provide comprehensive descriptions of these species in tissue. MALDI imaging mass spectrometry (IMS) of low molecular weight ions is particularly challenging as MALDI matrix clusters are often nominally isobaric with multiple metabolite ions, requiring high resolving power instrumentation or derivatization to circumvent this issue. An alternative to this is to perform ion mobility separation before ion detection, enabling the visualization of metabolites without the interference of matrix ions. Additional difficulties surrounding low weight metabolite visualization include high resolution imaging, while maintaining sufficient ion numbers for broad and representative analysis of the tissue chemical complement. Here, we use MALDI timsTOF IMS to image low molecular weight metabolites at higher spatial resolution than most metabolite MALDI IMS experiments (20 µm) while maintaining broad coverage within the human kidney. We demonstrate that trapped ion mobility spectrometry (TIMS) can resolve matrix peaks from metabolite signal and separate both isobaric and isomeric metabolites with different distributions within the kidney. The added ion mobility data dimension dramatically increased the peak capacity for spatial metabolomics experiments. Through this improved sensitivity, wemore »have found >40 low molecular weight metabolites in human kidney tissue such as arginic acid, acetylcarnitine, and choline that localize to the cortex, medulla, and renal pelvis, respectively. Future work will involve further exploring metabolomic profiles of human kidneys as a function of age, gender, and ethnicity.« less
  3. Lipid screening of biological substrates is an important step during biomarker detection and identification. In this work, a fast workflow is described capable of rapid screening for lipid components from biological tissues at ambient pressure based on liquid microjunction extraction in tandem with nano-electrospray ionization (nESI) with ultra-high resolution mass spectrometry, i.e. , liquid extraction surface analysis (LESA) coupled to Fourier-transform ion cyclotron resonance (tandem) mass spectrometry (LESA-FT-ICR-MS/MS). Lipid profiles are presented for thin tissue sections of mouse brain (MB) and liver (ML) samples, analyzed in both positive and negative mode by data-dependent acquisition (DDA) tandem FT-ICR-MS/MS. Candidate assignments were based on fragmentation patterns using mostly SimLipid software and accurate mass using mostly the LipidMaps database (average sub-ppm mass error). A typical, single point surface analysis (<1 mm spatial sampling resolution) lasted less than 15 minutes and resulted in the assignment of (unique and mulitple) lipid identifications of ∼190 (MB) and ∼590 (ML) m / z values. Despite the biological complexity, this led to unique identifications of distinct lipid molecules (sub-ppm mass error) from 38 different lipid classes, corresponding to 10–30% of the lipid m / z identifications.
  4. Polyacetylenic lipids accumulate in various Apiaceae species after pathogen attack, suggesting that these compounds are naturally occurring pesticides and potentially valuable resources for crop improvement. These compounds also promote human health and slow tumor growth. Even though polyacetylenic lipids were discovered decades ago, the biosynthetic pathway underlying their production is largely unknown. To begin filling this gap and ultimately enable polyacetylene engineering, we studied polyacetylenes and their biosynthesis in the major Apiaceae crop carrot (Daucus carota subsp. sativus). Using gas chromatography and mass spectrometry, we identified three known polyacetylenes and assigned provisional structures to two novel polyacetylenes. We also quantified these compounds in carrot leaf, petiole, root xylem, root phloem, and root periderm extracts. Falcarindiol and falcarinol predominated and accumulated primarily in the root periderm. Since the multiple double and triple carbon-carbon bonds that distinguish polyacetylenes from ubiquitous fatty acids are often introduced by Δ12 oleic acid desaturase (FAD2)-type enzymes, we mined the carrot genome for FAD2 genes. We identified a FAD2 family with an unprecedented 24 members and analyzed public, tissue-specific carrot RNA-Seq data to identify coexpressed members with root periderm-enhanced expression. Six candidate genes were heterologously expressed individually and in combination in yeast and Arabidopsis (Arabidopsis thaliana), resultingmore »in the identification of one canonical FAD2 that converts oleic to linoleic acid, three divergent FAD2-like acetylenases that convert linoleic into crepenynic acid, and two bifunctional FAD2s with Δ12 and Δ14 desaturase activity that convert crepenynic into the further desaturated dehydrocrepenynic acid, a polyacetylene pathway intermediate. These genes can now be used as a basis for discovering other steps of falcarin-type polyacetylene biosynthesis, to modulate polyacetylene levels in plants, and to test the in planta function of these molecules. Many organisms implement specialized biochemical pathways to convert ubiquitous metabolites into bioactive chemical compounds. Since plants comprise the majority of the human diet, specialized plant metabolites play crucial roles not only in crop biology but also in human nutrition. Some asterids produce lipid compounds called polyacetylenes (for review, see Negri, 2015) that exhibit antifungal activity (Garrod et al., 1978; Kemp, 1978; Harding and Heale, 1980, 1981; Olsson and Svensson, 1996) and accumulate in response to fungal phytopathogen attack (De Wit and Kodde, 1981; Elgersma and Liem, 1989). These observations have led to the longstanding hypothesis that polyacetylenes are natural pesticides. These same lipid compounds exhibit cytotoxic activity against human cancer cell lines and slow tumor growth (Fujimoto and Satoh, 1988; Matsunaga et al., 1989, 1990; Cunsolo et al., 1993; Bernart et al., 1996; Kobaek-Larsen et al., 2005; Zidorn et al., 2005), making them important nutritional compounds. The major source of polyacetylenes in the human diet is carrot (Daucus carota L.). Carrot is one of the most important crop species in the Apiaceae, with rapidly increasing worldwide cultivation (Rubatzky et al., 1999; Dawid et al., 2015). The most common carrot polyacetylenes are C17 linear aliphatic compounds containing two conjugated carbon-carbon triple bonds, one or two carbon-carbon double bonds, and a diversity of additional in-chain oxygen-containing functional groups. In carrot, the most abundant of these compounds are falcarinol and falcarindiol (Dawid et al., 2015). Based on their structures, it has been hypothesized that these compounds (alias falcarin-type polyacetylenes) are derived from ubiquitous fatty acids. Indeed, biochemical investigations (Haigh et al., 1968; Bohlman, 1988), radio-chemical tracer studies (Barley et al., 1988), and the discovery of pathway intermediates (Jones et al., 1966; Kawazu et al., 1973) implicate a diversion of flux away from linolenate biosynthesis as the entry point into falcarin-type polyacetylene biosynthesis (for review, see Minto and Blacklock, 2008). The final steps of linolenate biosynthesis are the conversion of oleate to linoleate, mediated by fatty acid desaturase 2 (FAD2), and linoleate to linolenate, catalyzed by FAD3. Some plant species contain divergent forms of FAD2 that, instead of or in addition to converting oleate to linoleate, catalyze the installation of unusual in-chain functional groups such as hydroxyl groups, epoxy groups, conjugated double bonds, or carbon-carbon triple bonds into the acyl chain (Badami and Patil, 1980) and thus divert flux from linolenate production into the accumulation of unusual fatty acids. Previous work in parsley (Petroselinum crispum; Apiaceae) identified a divergent form of FAD2 that (1) was up-regulated in response to pathogen treatment and (2) when expressed in soybean embryos resulted in production of the monoyne crepenynate and, by the action of an unassigned enzyme, dehydrocrepenynate (Kirsch et al., 1997; Cahoon et al., 2003). The results of the parsley studies are consistent with a pathogen-responsive, divergent FAD2-mediated pathway that leads to acetylenic fatty acids. However, information regarding the branch point into acetylenic fatty acid production in agriculturally relevant carrot is still largely missing, in particular, the identification and functional characterization of enzymes that can divert carbon flux away from linolenate biosynthesis into the production of dehydrocrepenynate and ultimately falcarin-type polyacetylenes. Such genes, once identified, could be used in the future design of transgenic carrot lines with altered polyacetylene content, enabling direct testing of in planta polyacetylene function and potentially the engineering of pathogen-resistant, more nutritious carrots. These genes could also provide the foundation for further investigations of more basic aspects of plant biology, including the evolution of fatty acid-derived natural product biosynthesis pathways across the Asterid clade, as well as the role of these pathways and compounds in plant ecology and plant defense. Recently, a high-quality carrot genome assembly was released (Iorizzo et al., 2016), providing a foundation for genome-enabled studies of Apiaceous species. This study also provided publicly accessible RNA sequencing (RNA-Seq) data from diverse carrot tissues. Using these resources, this study aimed to provide a detailed gas chromatography-based quantification of polyacetylenes in carrot tissues for which RNA-Seq data are available, then combine this information with bioinformatics analysis and heterologous expression to identify and characterize biosynthetic genes that underlie the major entry point into carrot polyacetylene biosynthesis. To achieve these goals, thin-layer chromatography (TLC) was combined with gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection to identify and quantify polyacetylenic metabolites in five different carrot tissues. Then the sequences and tissue expression profiles of potential FAD2 and FAD2-like genes annotated in the D. carota genome were compared with the metabolite data to identify candidate pathway genes, followed by biochemical functionality tests using yeast (Saccharomyces cerevisae) and Arabidopsis (Arabidopsis thaliana) as heterologous expression systems.« less
  5. Lipid pheromones play a significant role in the behavior and ecology of many insects. The characterization of pheromone structures is a significant challenge due to their low abundance and ephemeral nature. Here we present a method for the analysis of lipid molecules from single pheromone glands of Drosophila melanogaster (fruit fly) using Direct Analysis in Real Time mass spectrometry (DART MS). Our results reveal that DART MS analysis of single tissues generates reproducible, species-specific lipid profiles comprised of fatty acids, wax esters, diacylglycerides and triacylglycerides. In addition, the ion source temperature and application of a solvent wash can cause significant qualitative and quantitative changes in the mass spectral profile. Lastly, we show that untargeted chemical fingerprinting of the gland can be used to accurately categorize species according to phylogenetic subgroup or genotype. Collectively, our findings indicate that DART MS is a rapid and powerful method for characterizing a broad range of lipids in tissues with minimal preparation. The application of direct tissue DART MS will expand the “secretome” of molecules produced by pheromone glands. In addition to its direct relevance to chemical ecology, the method could potentially be used in pharmaceutical studies for the screening and detection of tissue-specific drugmore »metabolites.« less