Abstract The interior of Dronning Maud Land (DML) in East Antarctica is one of the most data-sparse regions of Antarctica for studying climate change. A monthly mean near-surface temperature dataset for the last 30 years has been compiled from the historical records from automatic weather stations (AWSs) at three sites in the region (Mizuho, Relay Station, and Dome Fuji). Multiple AWSs have been installed along the route to Dome Fuji since the 1990s, and observations have continued to the present day. The use of passive-ventilated radiation shields for the temperature sensors at the AWSs may have caused a warm bias in the temperature measurements, however, due to insufficient ventilation in the summer, when solar radiation is high and winds are low. In this study, these warm biases are quantified by comparison with temperature measurements with an aspirated shield and subsequently removed using a regression model. Systematic error resulting from changes in the sensor height due to accumulating snow was insignificant in our study area. Several other systematic errors occurring in the early days of the AWS systems were identified and corrected. After the corrections, multiple AWS records were integrated to create a time series for each station. The percentage of missing data over the three decades was 21% for Relay Station and 28% for Dome Fuji. The missing rate at Mizuho was 49%, more than double that at Relay Station. These new records allow for the study of temperature variability and change in DML, where climate change has so far been largely unexplored. Significance StatementAntarctic climate change has been studied using temperature data at staffed stations. The staffed stations, however, are mainly located on the Antarctic Peninsula and in the coastal regions. Climate change is largely unknown in the Antarctic plateau, particularly in the western sector of the East Antarctic Plateau in areas such as the interior of Dronning Maud Land (DML). To fill the data gap, this study presents a new dataset of monthly mean near-surface climate data using historical observations from three automatic weather stations (AWSs). This dataset allows us to study temperature variability and change over a data-sparse region where climate change has been largely unexplored.
more »
« less
The AntAWS dataset: a compilation of Antarctic automatic weather station observations
Abstract. A new meteorological dataset derived from records of Antarctic automatic weather stations (here called the AntAWS dataset) at 3 h, daily and monthly resolutions including quality control information is presented here. This dataset integrates the measurements ofair temperature, air pressure, relative humidity, and wind speed anddirection from 267 Antarctic AWSs obtained from 1980 to 2021. The AWS spatial distribution remains heterogeneous, with the majority of instrumentslocated in near-coastal areas and only a few inland on the East Antarctic Plateau. Among these 267 AWSs, 63 have been operating for more than 20 years and 27 of them in excess of more than 30 years. Of the fivemeteorological parameters, the measurements of air temperature have the bestcontinuity and the highest data integrity. The overarching aim of thiscomprehensive compilation of AWS observations is to make these data easilyand widely accessible for efficient use in local, regional and continentalstudies; it may be accessed at https://doi.org/10.48567/key7-ch19 (Wang et al., 2022). This dataset isinvaluable for improved characterization of the surface climatology acrossthe Antarctic continent, to improve our understanding of Antarctic surfacesnow–atmosphere interactions including precipitation events associated with atmospheric rivers and to evaluate regional climate models ormeteorological reanalysis products.
more »
« less
- PAR ID:
- 10420949
- Date Published:
- Journal Name:
- Earth System Science Data
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 1866-3516
- Page Range / eLocation ID:
- 411 to 429
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Surface temperature measurements with naturally ventilated (NV) sensors over the Antarctic Plateau are largely subject to systematic errors caused by solar radiative heating. Here we examined the radiative heating error in Dronning Maud Land on the East Antarctic Plateau using both the newly installed automatic weather stations (AWSs) at NDF and Relay Station and the existing AWSs at Relay Station and Dome Fuji. Two types of NV shields were used in these AWSs: a multiplate radiation shield and a simple cylinder-shaped shield. In austral summer, the temperature bias between the force-ventilated (FV) sensor and the NV sensor never reached zero because of continuous sunlight. The hourly mean temperature errors reached up to 8°C at noon on a sunny day with weak wind conditions. The errors increased linearly with increasing reflected shortwave radiation and decreased nonlinearly with increasing wind speed. These features were observed in both the multiplate and the cylinder-shaped shields. The magnitude of the errors of the multiplate shield was much larger than that of the cylinder-shaped shield. To quantify the radiative errors, we applied an existing correction model based on the regression approach and successfully reduced the errors by more than 70% after the correction. This indicates that we can use the corrected temperature data instead of quality controlled data, which removed warm bias during weak winds in inland Dronning Maud Land.more » « less
-
Abstract. The ERA5 climate reanalysis dataset plays an important role in applications such as monitoring and modeling climate system changes in polar regions, so the calibration of the reanalysis to ground observations is of great relevance. Here, we compare the 2 m air temperature time series of the ERA5 reanalysis and the near-surface bias-corrected reanalysis to the near-ground air temperature measured at 17 automatic weather stations (AWSs) in the McMurdo Dry Valleys, Antarctica. We find that the reanalysis data have biases that change with the season of the year and do not clearly correlate with elevation. Our results show that future work should rely on secondary observations to calibrate when using the ERA5 reanalysis in polar regions.more » « less
-
Abstract A major uncertainty in reconstructing historical sea surface temperature (SST) before the 1990s involves correcting for systematic offsets associated with bucket and engine-room intake temperature measurements. A recent study used a linear scaling of coastal station-based air temperatures (SATs) to infer nearby SSTs, but the physics in the coupling between SATs and SSTs generally gives rise to more complex regional air–sea temperature differences. In this study, an energy-balance model (EBM) of air–sea thermal coupling is adapted for predicting near-coast SSTs from coastal SATs. The model is shown to be more skillful than linear-scaling approaches through cross-validation analyses using instrumental records after the 1960s and CMIP6 simulations between 1880 and 2020. Improved skill primarily comes from capturing features reflecting air–sea heat fluxes dominating temperature variability at high latitudes, including damping high-frequency wintertime SAT variability and reproducing the phase lag between SSTs and SATs. Inferred near-coast SSTs allow for intercalibrating coastal SAT and SST measurements at a variety of spatial scales. The 1900–40 mean offset between the latest SST estimates available from the Met Office (HadSST4) and SAT-inferred SSTs range between −1.6°C (95% confidence interval: [−1.7°, −1.4°C]) and 1.2°C ([0.8°, 1.6°C]) across 10° × 10° grids. When further averaged along the global coastline, HadSST4 is significantly colder than SAT-inferred SSTs by 0.20°C ([0.07°, 0.35°C]) over 1900–40. These results indicate that historical SATs and SSTs involve substantial inconsistencies at both regional and global scales. Major outstanding questions involve the distribution of errors between our intercalibration model and instrumental records of SAT and SST as well as the degree to which coastal intercalibrations are informative of global trends. Significance Statement To evaluate the consistency of instrumental surface temperature estimates before the 1990s, we develop a coupled energy-balance model to intercalibrate measurements of sea surface temperature (SST) and station-based air temperature (SAT) near global coasts. Our model captures geographically varying physical regimes of air–sea coupling and outperforms existing methods in inferring regional SSTs from SAT measurements. When applied to historical temperature records, the model indicates significant discrepancies between inferred and observed SSTs at both global and regional scales before the 1960s. Our findings suggest remaining data issues in historical temperature archives and opportunities for further improvements.more » « less
-
Downscaling coarse global and regional climate models allows researchers to access weather and climate data at finer temporal and spatial resolution, but there remains a need to compare these models with empirical data sources to assess model accuracy. Here, we validate a widely used software for generating North American downscaled climate data, ClimateNA, with a novel empirical data source, 20th century weather journals kept by Admiralty Island, Alaska homesteader, Allen Hasselborg. Using Hasselborg’s journals, we calculated monthly precipitation and monthly mean of the maximum daily air temperature across the years 1926 to 1954 and compared these to ClimateNA data generated from the Hasselborg homestead location and adjacent areas. To demonstrate the utility and potential implications of this validation for other disciplines such as hydrology, we used an established regression equation to generate time series of 95% low duration flow estimates for the month of August using mean annual precipitation from ClimateNA predictions and Hasselborg data. Across 279 months, we found strong correlation between modeled and observed measurements of monthly precipitation ( ρ = 0.74) and monthly mean of the maximum daily air temperature ( ρ = 0.98). Monthly precipitation residuals (calculated as ClimateNA data - Hasselborg data) generally demonstrated heteroscedasticity around zero, but a negative trend in residual values starting during the last decade of observations may have been due to a shift to the cold-phase Pacific Decadal Oscillation. Air temperature residuals demonstrated a consistent but small positive bias, with ClimateNA tending to overestimate air temperature relative to Hasselborg’s journals. The degree of correlation between weather patterns observed at the Hasselborg homestead site and ClimateNA data extracted from spatial grid cells across the region varied by wet and dry climate years. Monthly precipitation from both data sources tended to be more similar across a larger area during wet years (mean ρ across grid cells = 0.73) compared to dry years (mean ρ across grid cells = 0.65). The time series of annual 95% low duration flow estimates for the month of August generated using ClimateNA and Hasselborg data were moderately correlated ( ρ = 0.55). Our analysis supports previous research in other regions which also found ClimateNA to be a robust source for past climate data estimates.more » « less
An official website of the United States government

