skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global and Regional Discrepancies between Early-Twentieth-Century Coastal Air and Sea Surface Temperature Detected by a Coupled Energy-Balance Analysis
Abstract A major uncertainty in reconstructing historical sea surface temperature (SST) before the 1990s involves correcting for systematic offsets associated with bucket and engine-room intake temperature measurements. A recent study used a linear scaling of coastal station-based air temperatures (SATs) to infer nearby SSTs, but the physics in the coupling between SATs and SSTs generally gives rise to more complex regional air–sea temperature differences. In this study, an energy-balance model (EBM) of air–sea thermal coupling is adapted for predicting near-coast SSTs from coastal SATs. The model is shown to be more skillful than linear-scaling approaches through cross-validation analyses using instrumental records after the 1960s and CMIP6 simulations between 1880 and 2020. Improved skill primarily comes from capturing features reflecting air–sea heat fluxes dominating temperature variability at high latitudes, including damping high-frequency wintertime SAT variability and reproducing the phase lag between SSTs and SATs. Inferred near-coast SSTs allow for intercalibrating coastal SAT and SST measurements at a variety of spatial scales. The 1900–40 mean offset between the latest SST estimates available from the Met Office (HadSST4) and SAT-inferred SSTs range between −1.6°C (95% confidence interval: [−1.7°, −1.4°C]) and 1.2°C ([0.8°, 1.6°C]) across 10° × 10° grids. When further averaged along the global coastline, HadSST4 is significantly colder than SAT-inferred SSTs by 0.20°C ([0.07°, 0.35°C]) over 1900–40. These results indicate that historical SATs and SSTs involve substantial inconsistencies at both regional and global scales. Major outstanding questions involve the distribution of errors between our intercalibration model and instrumental records of SAT and SST as well as the degree to which coastal intercalibrations are informative of global trends. Significance Statement To evaluate the consistency of instrumental surface temperature estimates before the 1990s, we develop a coupled energy-balance model to intercalibrate measurements of sea surface temperature (SST) and station-based air temperature (SAT) near global coasts. Our model captures geographically varying physical regimes of air–sea coupling and outperforms existing methods in inferring regional SSTs from SAT measurements. When applied to historical temperature records, the model indicates significant discrepancies between inferred and observed SSTs at both global and regional scales before the 1960s. Our findings suggest remaining data issues in historical temperature archives and opportunities for further improvements.  more » « less
Award ID(s):
2123295 2122805
PAR ID:
10431307
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
36
Issue:
7
ISSN:
0894-8755
Page Range / eLocation ID:
2205 to 2220
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Accurate historical records of Earth’s surface temperatures are central to climate research and policy development. Widely-used estimates based on instrumental measurements from land and sea are, however, not fully consistent at either global or regional scales. To address these challenges, we develop the Dynamically Consistent ENsemble of Temperature (DCENT), a 200-member ensemble of monthly surface temperature anomalies relative to the 1982–2014 climatology. Each DCENT member starts from 1850 and has a 5° × 5° resolution. DCENT leverages several updated or recently-developed approaches of data homogenization and bias adjustments: an optimized pairwise homogenization algorithm for identifying breakpoints in land surface air temperature records, a physics-informed inter-comparison method to adjust systematic offsets in sea-surface temperatures recorded by ships, and a coupled energy balance model to homogenize continental and marine records. Each approach was published individually, and this paper describes a combined approach and its application in developing a gridded analysis. A notable difference of DCENT relative to existing temperature estimates is a cooler baseline for 1850–1900 that implies greater historical warming. 
    more » « less
  2. Abstract General Circulation Model (GCM) simulations with prescribed observed sea surface temperature (SST) over the historical period show systematic global shortwave cloud radiative effect (SWCRE) variations uncorrelated with global surface temperature (known as “pattern effect”). Here, we show that a single parameter that quantifies the difference in SSTs between regions of tropical deep convection and the tropical or global average (Δconv) captures the time‐varying “pattern effect” in the simulations using the PCMDI/AMIPII SST recommended for CMIP6. In particular, a large positive trend in the 1980s–1990s in Δconvexplains the change of sign to a strongly negative SWCRE feedback since the late 1970s. In these decades, the regions of deep convection warm about +50% more than the tropical average. Such an amplification is rarely observed in forced coupled atmosphere‐ocean GCM simulations, where the amplified warming is typically about +10%. During the post 2000 global warming hiatus Δconvshows little change, and the more recent period of resumed global warming is too short to robustly detect trends. In the prescribed SST simulations, Δconvis forced by the SST difference between warmer and colder regions. An index thereof (SST#) evaluated for six SST reconstructions shows similar trends for the satellite era, but the difference between the pre‐ and the satellite era is substantially larger in the PCMDI/AMIPII SSTs than in the other reconstructions. Quantification of the cloud feedback depends critically on small changes in the shape of the SST probability density distribution. These sensitivities underscore how essential highly accurate, persistent, and stable global climate records are to determine the cloud feedback. 
    more » « less
  3. Surface and subsurface moored buoy, ship-based, remotely sensed, and reanalysis datasets are used to investigate thermal variability of northern Gulf of Alaska (NGA) nearshore, coastal, and offshore waters over synoptic to century-long time scales. NGA sea surface temperature (SST) showed a larger positive trend of 0.22 ± 0.10 °C per decade over 1970–2021 compared to 0.10 ± 0.03 °C per decade over 1900–2021. Over synoptic time scales, SST covariance between two stations is small (<10%) when separation exceeds 100 km, while stations separated by 500 km retain 50% of their co-variability for seasonal and longer fluctuations. Relative to in situ sensor data, remotely sensed SST data has limited accuracy in some NGA settings, capturing 60–70% of the daily SST anomaly in coastal and offshore waters, but often <25% nearshore. North Pacific and NGA leading modes of SST variability leave 25–50% of monthly variance unresolved. Analysis of the 2014–2016 Pacific marine heatwave shows that NGA coastal surface temperatures warmed contemporaneously with offshore waters through 2013, but deep inner shelf waters (200–250 m) exhibited delayed warming. Offshore surface waters cooled from 2014 to 2016, while shelf waters continued to warm from the combined effects of local air-sea and advective heat fluxes. We find that annually averaged Sitka air temperature is a leading predictor (r2 = 0.37, p < 0.05) for following-year NGA coastal water column temperature. Our results can inform future environmental monitoring designs, assist forward-looking projections of marine conditions, and show the importance of in situ measurements for nearshore studies that require knowledge of thermal conditions over time scales of days and weeks. 
    more » « less
  4. Abstract Ocean‐atmosphere dynamics in the north Pacific play an important role in the global climate system and influence hydroclimate in western North America. However, changes to this region's mean climate under increased atmospheric greenhouse gas concentrations are not well understood. Here we present new alkenone‐based records of sea surface temperature (SST) from the northeast Pacific from the mid‐Piacenzian warm period (approximately 3.3–3.0 Ma), an interval considered to be an analog for near‐future climate under middle‐of‐the‐road anthropogenic emissions. We compare these and other alkenone‐based SST records from the north Pacific to fully‐coupled climate model simulations to examine the impact of mid‐Pliocene CO2and other boundary conditions on regional climate dynamics and to explore factors governing model disagreement about regional temperature patterns. Model performance varies regionally, with Community Earth System Model 1.2 (CESM 1.2) and CESM2 performing best in regions with greater warming like the California Margin, though these models underestimate the warming evidenced in our new proxy record and others from the region. Single forcing simulations reveal a strong influence for prescribed land surface changes and higher CO2levels on coastal warming patterns along the California Margin in CESM2. Furthermore, differences in shortwave and longwave radiation and circulation between the models, likely related to changes in the atmospheric component of the model, may play a key role in the ability of models to capture regionally‐varying patterns of Pliocene warmth. Regional patterns of temperature change inferred from geochemical records could therefore help to understand the impacts of different model parameterization schemes on regional climate patterns. 
    more » « less
  5. Abstract Marine heatwaves (MHWs)—extremely warm, persistent sea surface temperature (SST) anomalies causing substantial ecological and economic consequences—have increased worldwide in recent decades. Concurrent increases in global temperatures suggest that climate change impacted MHW occurrences, beyond random changes arising from natural internal variability. Moreover, the long-term SST warming trend was not constant but instead had more rapid warming in recent decades. Here we show that this nonlinear trend can—on its own—appear to increase SST variance and hence MHW frequency. Using a Linear Inverse Model to separate climate change contributions to SST means and internal variability, both in observations and CMIP6 historical simulations, we find that most MHW increases resulted from regional mean climate trends that alone increased the probability of SSTs exceeding a MHW threshold. Our results suggest the need to carefully attribute global warming-induced changes in climate extremes, which may not always reflect underlying changes in variability. 
    more » « less