- Award ID(s):
- 2003307
- NSF-PAR ID:
- 10420997
- Publisher / Repository:
- https://ieeexplore.ieee.org/document/9987551
- Date Published:
- Journal Name:
- IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
- ISSN:
- 0278-0070
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
An ensemble data-learning approach based on proper orthogonal decomposition (POD) and Galerkin projection (EnPOD-GP) is proposed for thermal simulations of multi-core CPUs to improve training efficiency and the model accuracy for a previously developed global POD-GP method (GPOD-GP). GPOD-GP generates one set of basis functions (or POD modes) to account for thermal behavior in response to variations in dynamic power maps (PMs) in the entire chip, which is computationally intensive to cover possible variations of all power sources. EnPOD-GP however acquires multiple sets of POD modes to significantly improve training efficiency and effectiveness, and its simulation accuracy is independent of any dynamic PM. Compared to finite element simulation, both GPOD-GP and EnPOD-GP offer a computational speedup over 3 orders of magnitude. For a processor with a small number of cores, GPOD-GP provides a more efficient approach. When high accuracy is desired and/or a processor with more cores is involved, EnPOD-GP is more preferable in terms of training effort and simulation accuracy and efficiency. Additionally, the error resulting from EnPOD-GP can be precisely predicted for any random spatiotemporal power excitation.more » « less
-
null (Ed.)A previously developed thermal simulation technique based on model order reduction is applied to the simulation of a CPU. The approach is derived from proper orthogonal decomposition (POD) that projects the physical domain onto the POD space. It has been demonstrated that the developed approach offers an accurate thermal simulation of the CPU with a reduction in numerical degrees of freedom by several orders of magnitude compared to the direct numerical simulation (DNS). In addition, the technique has the capability of providing spatial resolution as fine as the direct numerical simulation for the CPU.more » « less
-
A methodology of multi-dimensional physics simulations is investigated based on a data-driven learning algorithm derived from proper orthogonal decomposition (POD). The approach utilizes numerical simulation tools to collect solution data for the problems of interest subjected to parametric variations that may include interior excitations and/or boundary conditions influenced by exterior environments. The POD is applied to process the data and to generate a finite set of basis functions. The problem is then projected from the physical domain onto a mathematical space constituted by its basis functions. The effectiveness of the POD methodology thus depends on the data quality, which relies on the numerical settings implemented in the data collection (or the training). The simulation methodology is developed and demonstrated in a dynamic heat transfer problem for an entire CPU and in a quantum eigenvalue problem for a quantum-dot structure. Encouraging findings are observed for the POD simulation methodology in this investigation, including its extreme efficiency, high accuracy and great adaptability. The models constructed by the POD basis functions are even capable of predicting the solution of the problem beyond the conditions implemented in the training with a good accuracy.more » « less
-
Abstract Uvula‐induced snoring and associated obstructive sleep apnea is a complex phenomenon characterized by vibrating structures and highly transient vortex dynamics. This study aimed to extract signature features of uvula wake flows of different pathological origins and develop a linear reduced‐order surrogate model for flow control. Six airway models were developed with two uvula kinematics and three pharynx constriction levels. A direct numerical simulation (DNS) flow solver based on the immersed boundary method was utilized to resolve the wake flows induced by the flapping uvula. Key spatial and temporal responses of the flow to uvula kinematics and pharynx constriction were investigated using continuous wavelet transform (CWT), proper orthogonal decomposition (POD), and dynamic mode decomposition (DMD). Results showed highly complex patterns in flow topologies. CWT analysis revealed multiscale correlations in both time and space between the flapping uvular and wake flows. POD analysis successfully separated the flows among the six models by projecting the datasets in the vector space spanned by the first three eigenmodes. Perceivable differences were also captured in the time evolution of the DMD modes among the six models. A linear reduced‐order surrogate model was constructed from the predominant eigenmodes obtained from the DMD analysis and predicted vortex patterns from this surrogate model agreed well with the corresponding DNS simulations. The computational and analytical platform presented in this study could bring a variety of applications in breathing‐related disorders and beyond. The computational efficiency of surrogate modeling makes it well suited for flow control, forecasting, and uncertainty analyses.
-
null (Ed.)In this article, we address the problem of accurate full-chip power and thermal map estimation for commercial off-the-shelf multi-core processors. Processors operating with heat sink cooling remains a challenging problem due to the difficulty in direct measurement. We first propose an accurate full-chip steady-state power density map estimation method for commercial multi-core microprocessors. The new method consists of a few steps. First, 2D spatial Laplace operation is performed on the measured thermal maps (images) without heat sink to obtain the so-called "raw power maps". Then, a novel scheme is developed to generate the true power density maps from the raw power density maps. The new approach is based on thermal measurements of the processor with back-side cooling using an advanced infrared (IR) thermal imaging system. FEM thermal model constructed in COMSOL Multiphysics is used to validate the estimated power density maps and thermal conductivity. Later, this work creates a high-fidelity FEM thermal model with heat sink and reconstructs the full-chip thermal maps while the heat sink is on. Ensuring that power maps are similar under back cooling and heat sink cooling settings, the reconstructed thermal maps are verified by the matching between the on-chip thermal sensor readings and the corresponding elements of thermal maps. Experiments on an Intel i7-8650U 4-core processor with back cooling shows 96\% similarity (2D correlation) between the measured thermal maps and the thermal maps reconstructed from the estimated power maps, with 1.3$\rm ^\circ$C average absolute error. Under heat sink cooling, the average absolute error is 2.2$\rm ^\circ$C over a 56$\rm ^\circ$C temperature range and about 3.9\% error between the computed and the real thermal maps at the sensor locations. Furthermore, the proposed power map estimation method achieves higher resolution and at least 100$\times$ speedup than a recently proposed state-of-art Blind Power Identification method.more » « less